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1. INTRODUCTION

L. 1996, Coker [5] introduced the concept of an intuitionistic set (called an in-
tuitionistic crisp set by Salama et al.[17]) as the generalzation of an ordinary set
and the specialization of an intuitionistic fuzzy set introduced by Atanassove [1].
After that time, many researchers [2, 0, 7, 8, 16, 18] applied the notion to topology,
and Selvanayaki and Ilango [19] studied homeomorphisms in intuitionistic topolog-
ical spaces. In particular, Bayhan and Coker [3] investigated separtion axioms in
intuitionistic topological spaces. And they [1] dealt with pairwise separation ax-
ioms in intuitionistic topological spaces and some relationships between categories
Dbl-Top and Bitop. Furthermore, Lee and Chu [15] introduced the category ITop
and investigated some relationships between ITop and Top. Recently, Kim et al.
[10] investigate the category ISet composed of intuitionistic sets and morphisms
between them in the sense of a topological universe. Also, they [11, 12] studied
some additional properties and give some examples related to closures, interiors in
and separation axioms in intuitionistic topological spaces. Moreover, Lee at al [13]
investigated limit points and nets in intuitionistic topological spaces and also they
[14] studied intuitionistic equivalence relation.
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In this paper, first of all, we define an intuitionistic quotient mapping and obtain
its some properties. Second, we define some types continuities, open and closed
mappings. And we investigate relationships among them and give some examples.
Finally, we introduce the notions of an intuitionistic subspace and the heredity, and
obtain some properties of each concept.

2. PRELIMINARIES

In this section, we list the concepts of an intuitionistic set, an intuitionistic point,
an intuitionistic vanishing point and operations of intuitionistic sets and some results
obtained by [5, 6, 7, 11].

Definition 2.1 ([5]). Let X be a non-empty set. Then A is called an intuitionistic
set (in short, IS) of X if it is an object having the form

A= (A7, Ap),

such that Ar N Ap = ¢, where Ap [resp. Ap] is called the set of members [resp.
nonmembers| of A.

In fact, Ap [resp. Ap] is a subset of X agreeing or approving [resp. refusing or
opposing] for a certain opinion, view, suggestion or policy.

The intuitionistic empty set [resp. the intuitionistic whole set] of X, denoted by
¢r1 [resp. X], is defined by ¢ = (¢, X) [resp. X1 = (X, ¢)].

In general, Ar U Ap # X.

We will denote the set of all ISs of X as I.5(X).

It is obvious that A = (A, ¢) € IS(X) for each ordinary subset A of X. Then
we can consider an IS of X as the generalization of an ordinary subset of X. Fur-
thermore, it is clear that A = (Ap, Ap, Ar) is an neutrosophic crisp set in X, for
each A € I5(X). Thus we can consider a neutrosophic crisp set in X as the gener-
alization of an IS of X. Moreover, we can consider an intuitionistic set in X as an
intuitionistic fuzzy set in X from Remark 2.2 in [11].

Definition 2.2 ([5]). Let A, B € IS(X) and let (4;);es C I15(X).
(i) We say that A is contained in B, denoted by A C B, if Ay C By and Ar D Bp.
(ii) We say that A equals to B, denoted by A = B, if AC B and B C A.
(iii) The complement of A denoted by A€, is an IS of X defined as:

A¢ = (Ap, Ar).
(iv) The union of A and B, denoted by AU B, is an IS of X defined as:
AUB= (AT UBT,AF ﬁBF)
(v) The union of (A;);jes, denoted by J;c; A; (in short, (JA;), is an IS of X
defined as:
U4 =UAir () A4r)
JjeJ jeJ jeJ
(vi) The intersection of A and B, denoted by AN B, is an IS of X defined as:

AQB:(ATQBT7AFUBF).
2
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(vii) The intersection of (A;);cs, denoted by
of X defined as:

jesAj (in short, (A4;), is an IS

A= () Air. | A4r).
JjeJ jeJ jeJ

(viii) A— B = An B°.

(i) [ JA = (A, Ar9), < > A = (ApS, Ap).

From Propositions 3.6 and 3.7 in [10], we can easily see that (1.5(X),U,N,°, ¢r, X1)
is a Boolean algebra except the following conditions:

AUA® £ X1, ANA° £ ér.

However, by Remark 2.12 in [11], (IS.(X),U,N,%,¢r,Xs) is a Boolean algebra,
where

Definition 2.3 ([5]). Let f : X — Y be a mapping, and let A € I5(X) and
B € IS(Y). Then
(i) the image of A under f, denoted by f(A), is an IS in Y defined as:

fA) = (f(A)r, f(A)r),

where f(A)r = f(Ar) and f(A)r = (f(A%))"
(ii) the preimage of B, denoted by f~!(B), is an IS in X defined as:

f71B) = (' (B)r, T (B)r),
where f(B)r = £~} (Br) and £~ (B)r = ' (Bg).

Result 2.4. (See [5], Corollary 2.11) Let f : X — Y be a mapping and let A, B,C €
IS(X), (Aj)jes C IS(X) and D,E,F € IS(Y), (Di)rex C IS(Y). Then the
followings hold:

(1) if B C C, then f(B) C f(C) and if E C F, then f~Y(E) C f~Y(F).
AcC f Lf(A)) and if f is injective, then A = f~ 1f(A)),
(f~Y(D)) C D and if f is sur]ectwe then f( YD)) =D,

HUDe) =UfH(Dx), f7HNDk) =N fH(De),

f
/o
FUA4;) =U(4)), F(NA;) CNf(A4)),

f(A) = o5 if and only if A= ¢r and hence f(é1) = @1, in particular if | is

surjectzve then f(X1) =Y7,

(7) f71 (Y1) = Y1, [~ (¢1) = ¢1.

(8) if f is surjective, then f(A)¢ C f(A°) and furthermore, if [ is injective, then
)C

9) f

(2)
(3)
(4)
(5)
(6)

flA) = ( C)
( D) = (f~H(D))°.
Definition 2.5 (See [5]). Let X be a non-empty set, a« € X and let A € I5(X).
(i) The form ({a},{a}®) [resp. (¢,{a})]is called an intuitionistic point [resp.
vanishing point] of X and denoted by a; [resp. arv].
(ii) We say that a; [resp. ajv] is contained in A, denoted by a; € A [resp.
ary € A],if a € Ar [resp. a ¢ Ap].

We will denote the set of all intuitionistic points or intuitionistic vanishing points
in X as IP(X).
3
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Definition 2.6 ([0]). Let X be a non-empty set and let 7 C IS(X). Then 7 is
called an intuitionistic topology (in short IT) on X, it satisfies the following axioms:

(i) 1, Xr e,

(il) AN B e, for any A,B € T,

(iii) U;e s A4j € 7, for each (4;)jes C 7.

In this case, the pair (X, 7) is called an intuitionistic topological space (in short,
ITS) and each member O of 7 is called an intuitionistic open set (in short, I0S) in
X. An IS F of X is called an intuitionistic closed set (in short, ICS) in X, if F° € 7.

It is obvious that {¢, X} is the smallest IT on X and will be called the intuition-
istic indiscreet topology and denoted by 77 . Also IS(X) is the greatest IT on X
and will be called the intuitionistic discreet topology and denoted by 77,;. The pair
(X,71,0) [resp. (X,77,1)] will be called the intuitionistic indiscreet [resp. discreet]
space.

We will denote the set of all ITs on X as IT(X). For an ITS X, we will denote
the set of all IOSs [resp. ICSs] on X as IO(X) [resp. IC(X)].

Result 2.7 ([6], Proposition 3.5). Let (X, 7) be an ITS. Then the following two ITs
on X can be defined by:

o1={[lU:Uethma={<>U:Ue€er7}

Furthermore, the following two ordinary topologies on X can be defined by (See

[3]):
1={Ur:Uet}, n={Usp:U€T}

We will denote two ITs 757 and 79 2 defined in Result 2.7 as
70,1 = [ }’T and 70,2 =< > T.

Moreover, for an IT 7 on a set X, we can see that (X, 71, 72) is a bitopological space
by Kelly [9] (Also see Proposition 3.1 in [4]).

Definition 2.8 ([7]). Let X be an ITS, p € X and let N € IS(X). Then
(i) N is called a neighborhood of py, if there exists an IOS G in X such that

pr € GCN, ie., pe Gr C Ny and Gp D Np,
(ii) N is called a neighborhood of pry, if there exists an IOS G in X such that
pPIrv € G C N, i.e., G C Nt andp¢ Gr D Np.

We will denote the set of all neighborhoods of p; [resp. prv] by N(pr) [resp.
N(prv)]-

Result 2.9 ([11], Theorem 4.2). Let (X,7) be an ITS and let A € IS(X). Then
(1) A e if and only if A € N(ay), for each aj € A,
(1) Aerif and only if A € N(ary), for each ary € A.

Result 2.10 ([7], Proposition 3.4). Let (X,7) be an ITS. We define the families
71 ={G : G € N(py), for each p; € G}

and
v ={G : G € N(prv), for each p;y € G}.
4
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Then 7,11y € IT(X)

From the above Result, we can easily see that for an IT 7 on a set X and each
Uer,
TI :TU{(UT,SU) : SU C UF}U{(¢,S) : S C X}
and
v =7 U{(Su,Ur) : Sy D Ur and Sy NUp = ¢}.

Result 2.11 ([7], Proposition 3.5). Let (X, 1) be an ITS. Then T C 71 and 7 C Tyv .

Result 2.12 ([11], Corollary 4.6). Let (X,7) be an ITS and let IC, [resp. IC,,
and IC.,, ] be the set of all ICSs w.r.t. T[resp. 71 and Trv]. Then

1C,(X) C IC,,(X) and IC,(X) C IC,,, (X).

Definition 2.13 ([6]). Let (X,7) be an ITS and let A € IS(X).
(i) The intuitionistic closure of A w.r.t. 7, denoted by Icl(A), is an IS of X
defined as:

Ic(A)=({K:K°c7and AC K}.

(ii) The intuitionistic interior of A w.r.t. 7, denoted by Iint(A), is an IS of X
defined as:
Iint(A) = {G: G € 7 and G C A}.

3. INTUITIONISTIC QUOTIENT SPACES

In this section, we define an intuitionistic quotient mapping and obtain its some
properties.

Definition 3.1 ([6]). Let X,Y be an ITSs. Then a mapping f : X — Y is said to
be continuous, if f~1(V) € IO(X), for each V € IO(Y).

The following is the immediate result of by the above definition.

Proposition 3.2. Let X,Y be ITSs. Then
(1) the identity id : X — X is continuous,
(2)iff: X =Y andg: Y — Z are continuous, then gof : X — Z is continuous,
(3) if f: X =Y is a constant mapping, then f is continuous,
(4) if X is an intuitionistic discrete space, then f is continuous,
(5) if Y is an intuitionistic indiscrete space, then f is continuous.

Result 3.3 ([6], Proposition 4.4). f: X — Y is continuous if and only if f~(F) €
IC(X), for each F € IC(Y).

Result 3.4 ([6], Proposition 4.5). The followings are equivalent:
(1) f: X =Y is continuous,
(2) f~1(Iint(B)) C Iint(f~Y(B)), for each B € IS(Y),
(3) Icl(f~Y(B)) C f~*(Icl(B)), for each B € IS(Y).

Result 3.5 ([15], Theorem 3.1). The followings are equivalent:
(1) f: X =Y is continuous,
(2) f(Icl(A)) C Icl(f(A)), for each a € IS(X).
)
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Definition 3.6. Let X,Y be ITSs. Then a mapping f : X — Y is said to be:
(i) open [0], if f(A) € IO(Y), for each A € IO(X),
(ii) closed [15], if f(F') € IC(Y), for each F € IC(X).

The following is the immediate result of the above definition.

Proposition 3.7. Let X,Y be an ITSs.

(1) f: X =Y and g:Y — Z are open [resp. closed], then go f : X — Z is open
[resp. closed).

(2) If both X and Y are intuitionistic discrete spaces, then f is continuous and
open.

Result 3.8 ([15], Theorem 3.2). f : X — Y be continuous and injective. Then
Iintf(A) C f(Iint(A)), for each A € IS(X).

Result 3.9 ([15], Theorem 3.4). Let X,Y be ITSs. Then the followings are equiv-
alent:

(1) f: X =Y is open,

(2) f(Iint(A)) C Lint(f(A)), for each A € IS(X),

(3) Iimt(f~*(B)) C f~Y(lint(B)), for each B € IS(Y).

The following is the immediate result of Results 3.8 and 3.9.

Corollary 3.10. f: X — Y be continuous, open and injective. Then Iintf(A) =
f(Iint(A)), for each A € IS(X).

Result 3.11 ([15], Theorem 3.8). Let X,Y be ITSs and f : X — Y a mapping.
Then f is closed if and only if Iclf(A)) C f(Icl(A)), for each A € IS(X).

‘

The following is the immediate result of Results 3.5 and 3.11.

Corollary 3.12. Let XY be ITSs and f : X — Y a mapping. Then f is continuous
and closed if and only if Iclf(A)) = f(Icl(A)), for each A € IS(X).

Proposition 3.13. Let (X,7) be an ITS, let Y be a set and let f : X — Y be a
mapping. We define a family v C IS(Y) as follows:
v ={UeISY): f~Y(U) e}

Then

(1) 7v € IT(Y),

(2) f:(X,7) = (Y, 7y) is continuous,

(3) if o is an IT on Y such that f : (X,7) — (Y,0) is continuous, then Ty is
finer than o, i.e., 0 C Ty.

Proof. (1) From Result 2.4 and the definition of an IT, we can easily show that
v € IT(Y).

(2) Tt is obvious that f: (X,7) — (Y, 7y) is continuous, by the definition 7y .

(3) Let U € 0. Since f: (X,7) — (Y,0) is continuous, f~1(U) € 7. Then by the
definition 7y, U € 7y. Thus o C 7y. O

Definition 3.14. Let (X,7) be an ITS, let Y be a set and let f : X — Y be

a surjective mapping. Let v = {U € IS(Y) : f~Y(U) € 7} be the IT on Y

in Proposition 3.13. Then 7y is called the intuitionistic quotient topology on Y
6
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induced by f. The pair (Y, 7y) is called an intuitionistic quotient space of X and f
is called an intuitionistic quotient mapping.

From Proposition 3.13, the intuitionistic quotient mapping f is not only continu-
ous but 7y is the finest topology on Y for which f is continuous. It is easy to prove
that if (Y, o) is an intuitionistic quotient space of (X, 7) with intuitionistic quotient
mapping f, then F is closed in Y if and only if f~!(F) is closed in X.

Proposition 3.15. Let (X,7) and (Y,0) be ITSs, let f: X — Y be a continuous
surjective mapping and let Ty be the intuitionistic quotient topology on Y induced
by f. If f is open or closed, then ¢ = Ty .

Proof. Suppose f is open. Since 7y is the finest topology on Y for which f is
continuous, ¢ C 7y. Let U € 7y. Then by the definition of 7y, f~1(U) € 7. Since f
is open and surjective, U = f(f~1(U)) € 0. Thus U € 0. So 7y C 0. Hence o = Ty-.

Suppose f is closed. Then by the similar arguments, we can see that o = 7y. O

From Proposition 3.15, we can easily see that if f : (X,7) — (Y, 0) is open (or
closed) continuous surjective, then f is an intuitionistic quotient mapping.
The following is the immediate result of Definition 3.14.

Proposition 3.16. The composition of two intuitionistic quotient mappings is an
intuitionistic quotient mapping.

Theorem 3.17. Let (X, 7) be an ITS, let Y be a set, let f : X — Y be a surjection,
let Ty be the intuitionistic quotient topology on'Y induced by f and let (Z,0) be an
ITS. Then a mapping g : Y — Z is continuous if and only if go f : X — Z 1is
continuous.

Proof. Suppose g : Y — Z is continuous. Since f : (X,7) — (Y, 7y) is continuous,
by Proposition 3.2 (2), go f: (X,7) — (Z,0) is continuous.

Suppose gof : (X,7) — (Z,0) is continuous and let V € o. Then (gof) (V) € 7
and (go f)~Y(V) = f~1(g7*(V)). Thus by the definition of 7y, g=1(V) € 7. So
g: (Y, 7v) = (Z,0) is continuous. O

Theorem 3.18. Let (X,7) and (Y,0) be ITSs and let p : X — Y be continuous.
Then p is an intuitionistic quotient mapping if and only if for each ITS (Z,n) and
each mapping g :' Y — Z, the continuity of g o p implies that of g.

Proof. The proof is similar to one of an ordinary topological space. O

Theorem 3.19. Let (X, 7),(Y,0) and (Z,n) be ITSs, let p: (X,7) — (Y,0) be an
intuitionistic quotient mapping and let h : (X,7) — (Z,n) be continuous. Suppose
hop~! is single-valued, i.e., for each y € Y, h is constant on p~(yr). Then

(1) (hop™Y)op=h and hop~?! is continuous,

(2) hop~! is open (closed) if and only if h(U) is open (closed), whenever U is
open (closed) in X such that U = p~1(p(U)).

Proof. (1) Let z € X. Then z; € p~*(p(zs)). Since h is constant on p~!(p(zy)),
h(zr) = h(p~"(p(x1))). On the other hand, h(p~"(p(x1))) = [(hop~')op](zr). Thus
h = (hop~1)op. Since h is continuous and p is an intuitionistic quotient mapping,
by Theorem 3.18, h o p~! is continuous.
(2) The proof is similar to one of an ordinary topological space. O
7
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Theorem 3.20. Let (X, 7),(Y,0) and (Z,n) be ITSs, let p: (X,7) = (Y,0) be an
intuitionistic quotient mapping and let g : Y — Z be sujective. Then gop is an
intuitionistic quotient mapping if and only if g is an intuitionistic quotient mapping.

Proof. The proof is similar to one of an ordinary topological space. O

Definition 3.21 ([14]). Let X,Y be non-empty sets. Then R is called an intuition-
istic relation (in short, IR) from X to Y, if it is an object having the form

R = (Rr,RF)

such that Rr, Rp C X XY and Ry N Rp = ¢, where Ry [resp. Rp] is called the
set of members [resp. nonmembers] of R. In fact, R € IS(X xY). In general,
RrURp#X xY.

In particular, R is called an intuitionistic relation on X, if R € IS(X x X).

The intuitionistic empty relation [resp. the intuitionistic whole relation] on X,
denoted by ¢r  [resp. Xg,1], is defined by ¢rr = (¢, X x X) [resp. Xp1 =
(X % X,0)].

We will denote the set of all IRs on X [resp. from X to Y] as IR(X x X) [resp.
IR(X x Y)).

It is obvious that if R € TR(X x Y), then Ry, Rp are ordinary relations from
X to Y and conversely, if R, is an ordinary relation from X to Y, then (R,, RS) €
IR(X xY).

Definition 3.22 ([3]). Let X,Y be non-empty sets, let R € TR(X x Y) and let
(p,g) € X xY.

(i) (p,q)s is said to belong to R, denoted by (p,q)r € R, if (p,q) € Rr.

(ii) (p,q)rv is said to belong to R, denoted by (p,q)rv € R, if (p,q) ¢ Rr.

Definition 3.23 ([11]). An IR R is called an intuitionistic equivalence relation (in
short, IER) on X, if it satisfies the following conditins:

(i) intuitionistic reflexive, i.e., Ry is reflexive and Rp is irreflexive, i.e., (z,z) ¢
Rp, for each x € X,

(ii) intuitionistic symmetric, i.e., Ry and Rp are symmetric,

(iil) intuitionistic transitive, i.e., RroRp C Ry and RpoRp D Rp, where StoRr
and denotes the ordinary composition and Sp o Rp = (S% o R%)°.

We will denote the set of all IERs on X as IE(X).

It is obvious that R € IE(X) if and only if Ry is an ordinary equivalence relation
on X, Ry is irreflexive and (R% o R%)¢ D Rp.

Definition 3.24 ([11]). Let R € IFE(X) and let * € X. Then the intuitionistic
equivalence class (in short, IEC) of x; modulo R, denoted by R,, or [zf], is an IS
in X defined as:
R:c[ = U{yl € Xy ($7y)1 € R}
In fact, R, = U{yr € X1 : (x,y) € Rr}.
We will denote the set of all IECs by R as X/R and X/R = {R,, : z € X} will
be called an intuionistic quotient set (in short, IQS) of X by R.

Result 3.25 ([14], Proposition 4.23). Let f : X — Y be a mapping. Consider
the IR Ry on X defined as: for each (z,y) € X x X, (z,y)r € Ry if and only if
8
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flzr) = f(yr). Then Ry € IE(X).

In this case, Ry is called the intuitionistic equivalence relation determined by f.

Proposition 3.26. Let (X,7) and (Y,0) be ITSs, let f : (X,7) — (Y,0) be con-
tinuous and let Ry be the intuitionistic equivalence relation on X determined by f.
Then

(1) the intuitionistic natural mapping p : (X,7) — (X/Rf,Tx/Rr,) is an intuition-
istic quotient mapping, where Tx,/g, denotes the intuitionistic quotient topology on
X/Rf7

(2) fop~! is continuous injective,

(3) if f is surjective, then bijective.

Proof. (1) It is obvious.

(2) Suppose z1,yr € p~!(z), for some z = [a;] € X/R;. Then by the definition of
Ry, f(zr) = f(yr). Thus fop~! is single-valued. So by Theorem 3.19 (1), fop~!
is continuous.

Now suppose [a7], [br] € X/Ry and fop~t([as]) = fop~1([bs]). Let z; € p~!([ay]
and y; € p~'([b7]). Then f(z;) = f(ys). Thus (z,y); € Rs. So [as] = p(z;) =
p(yr) = [br]. Hence f op~! is injective.

(3) Suppose f is surjective and let y € Y. Then there is z € X such that f(z) = y.
Since X; = J X/Ry, [z1] € X/Ry and fop~!([x7]) = y;. Thus fop~! is surjective.
So by (2), fop~! is bijective O

Theorem 3.27. Let (X, 7) and (Y,0) be ITSs and let f : (X,7) — (Y,0) be con-
tinuous surjective. Then fop~': X/Ry —Y is a homeomorphism if and only if f
18 an intuitionistic quotient mapping.

Proof. Suppose fop~t: (X/Ry, 7x/r; — (Y,0) be a homeomorphism and let oy be
the intuitionistic quotient topology on Y induced by f o p~!. Then by Proposition
3.13, 0 = oy. Thus f op~! is an intuitionistic quotient mapping. So by Theorem
3.20, (f op~!) op is an intuitionistic quotient mapping. On the other hand, f =
(fop~!)op. Hence f is an intuitionistic quotient mapping.

Suppose f : (X,7) — (Y,0) is an intuitionistic quotient mapping. Since f is
surjective, by Proposition 3.26 (3), f op™! is bijective. Let U be any 10S in X/Ry
such that U = p~1(p(U)). Since p~1(p(U)) = f~H(f(U)), f~1(f(U)) is open in X.
Since f is an intuitionistic quotient mapping, f(U) € 7. Then by Theorem 3.19 (2),
fop~!isopen. Thus fop~! is a homeomorphism. O

Definition 3.28 ([11]). Let (A4;)jes C IS(X). Then (A;);cs is called an intuition-
istic partition of X, if it satisfies the following conditions:

(i) A; # ¢5, for each j € J,

(ii) either A; N A; = ¢y or A, = A;, for any i,j € J,

(iii) Ujey 45 = Xr.

Now we turn our attention toward another way of defining an intuitionistic quo-
tient space.

Definition 3.29. Let (X, 7) be an ITS and let ¥ be an intuitionistic partition of
X. Let p: X — X be the mapping defined by: for each z € X,
9
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p(zr) = D and z; € D, for some D € 3.
If 75 is the intuitionistic quotient topology on ¥ induced by p, then (3, 7x) is called
an intuitionistic quotient space and p is called the intuitionistic natural mapping
of X onto . The set ¥ is called an intuitionistic decomposition of X and the
intuitionistic quotient space (3, 7x) is called an intuitionistic decomposition space
or an intuitionistic identification of X.

Example 3.30. Let X =N, let A= ({n € N:nisodd},{n € N:niseven}),B =
({n e N:niseven},{n € N:nis odd}) and let ¥ = {A, B}. Consider the mapping
p: X — X given by: for each n € X,

p(ny) = A, if n is odd and p(n;) = B, if n is even.
Then clearly, ¥ is an intuitionistic partition of X. Let 7 be the usual intuitionistic
topology on N and consider 7. Then clearly, 7y is the intuitionistic discrete topology
on N. Thus p_1(A4),p_1(B) € 7n. So ¥ is an intuitionistic decomposition of X.

4. SOME TYPES OF INTUITIONISTIC CONTINUITIES

In this section, we define some types continuities, open and closed mappings. And
we investigate relationships among them and give some examples.

Definition 4.1. Let (X,7),(Y,0) be an ITSs. Then a mapping f : X — Y is said
to:

(i) o-T-continuous, if it is continuous in the sense of Definition 3.1,

(ii) o-77-continuous, if for each V € o, f~1(V) € 7y,

(iii) o-77y-continuous, if for each V € o, f~1(V) € 71v,

(iv) or-T-continuous, if for each V € o7, f~1(V) € 7,

(v) o7-Tr-continuous, if for each V € o7, f~4(V) € 71

(vi) or-Trv-continuous, if for each V € o7, f~1(V) € 11v,,

(vii) oy-T-continuous, if for each V € o7y, f~H(V) € 7,

(viii) orv-77-continuous, if for each V' € oy, f~H(V) € 74,

(ix) orv-Trv-continuous, if for each V € oy, f~1(V) € 11v

The followings are the immediate results of Definition 4.1 and Result 2.11.

Proposition 4.2. Let (X,7),(Y,0) be an ITSs, f : X — Y be a mapping and let
pe X.

(1) If f is continuous, then it is both o-Tr-continuous and o-Try -continuous.

(2) If or-T-continuous, then both or-Tr-continuous and o-Try -continuous.

(3) orv-T-continuous, then both oy -Tr-continuous and oy -7y -continuous.

The followings explain relationships among types of intutionistic continuities.

Example 4.3. (See Example 3.6 in [7]) (1) Let X = {a, b, c,d} and consider ITs 7
on X given by:
T = {(rbfv XIv A17 AQ; A3, A4}7

where

A1 = ({a,b},{d}), A2 = ({c},{b.d}), Az = (¢,{b,d}), As= ({a,b,c},{d}).
Moreover,
T = TU{AZ‘ :1=25,06,---,23}, 77y =7 U{Agy, Ao},
10



332
333
334
335
336
337
338

339

340
341
342
343

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

J. G. Lee et al./Ann. Fuzzy Math. Inform. x (201y), No. x, xx—xx

where
As = ({c}{b}), A6 = ({c},{d}), A7 = ({a,0}, ), As = ({a,b,c}, ),
Ag = ({C}7¢), A = ((ba {a})7 An = (¢7 {b})’ Ao = ((b’ {C}),
Aig = (¢, {d}), A1a=(0,{a,b}), A15s = (¢,{a,c}), A6 = (¢,{a,d}),
A17 = (¢7 {ba C})ﬂ A18 = (¢a {Cﬂ d})a A19 = (¢a {av ba C}), AQO = (¢7 {av ba d})a
A21 = (d)v {aa & d})7 A22 = (¢a {ba c, d})7 A23 = (¢, ¢)7
Ay = ({a7 0}7 {b, d})7 Ags = ({a}7 {b7 d})
Let Y ={1,2,3,4,5} and let us consider ITS (Y, o) given by:

o= {¢I7vaBlvB2}7
where By = ({1,2,3},{5}), B2 = ({3},{4,5}). Then we can easily find 7; and 7ry:
or =0 U{Bs,By,Bs,Bs} US,

where Bz = ({1a2>3},¢)7 By = ({3}’ {4})aBS = ({3}’ {5})7 Bs = <{3}7¢)7
S={(¢,S):SCY}

and
orv = 0 U{By, Bs, By, Bio, B11, B12, B13, B4, B1s, Bis, B17, Bis},

where By = ({1a2>374}7 {5})7 Bs = ({L?’}v {4’5})7 By = ({273}, {475})7
By = ({172’3}’ {4’5})’ B = ({1’3}’ {4})7 Bis = ({2’3}7 {4})7
Bz = ({172’3}’ {4})7 By = ({173}7 {5})7 B = ({273}7 {5})7
B16 = ({17273}7{5})7 Bl7 = ({17233}a¢); BlS = ({1a27374}7¢)
Now let f: X — Y be the mapping defined by:

fla) = f(b) =1, f(c) = 4, f(d) = 5.

(i) f7Y(By) = A; € 7,fY(Bg) = Aig € 71. Then f is not continuous but
o-Tr-continuous.
(ii) We can easily see that f~1(U) € 7y, for each U € o;. Then f is o7-7/-
continuous.
(iii) f~1(By), f~Y(B7) = ({a,b,c},{d} ¢ Trv. Then f is neither o-7ry-continuous
nor oy -Try-continuous.
(iv)f~Y(Bs) = ({a},{c,d}) ¢ 71. Then f is not oy -7/-continuous.
(2) Let X = {a,b,c,d},Y ={1,2,3,4,5} and consider ITs 7 and 0 on X and Y,
respectively given by:
T = {1, X1, A1, A2, A3, Ay}
and
o =1{¢1,Yr,B1},
where A1 = ({a,b},{d}), As = ({b,d},{a,c}), A3 = ({b},{a,c,d}), Ay = ({a,b,d}, })
and By = ({1,2},{3,4}).
Then
T[:TU{AiZi:5,"- ,15}U%X andT[V:TU{Al'r},
where A5 = ({CI,, b}v ¢)7 Ag = ({bv d}v ¢)7 A7 = ({ba d}v {a})’ As = ({b7 d}’ {C}),
Ag = ({b}7 ¢)a A = ({b}7 {a})7A11 = ({b}v {C})a Ap = ({b}7 {d})7
Az = ({b}a {CL, C}), Ay = ({b}a {CL, d})7 Ays = ({b}a {Ca d})a
Sx = {((;575) 1S C X} A= ({a’bvc}v{d})
and
oy =0 ] {32,33,34} U gy,
11
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ory =o0U {B5},
where By = ({1,2},¢), Bs = ({1,2},{3}), B+ = ({1,2}, {4}),
%Y = {(¢7 S) 1S C Y}aBS = ({172a5}7{374})
Let g : X — Y be the mapping defined by:

g(a) =3,9(b) = 1,9(c) = 4,9(d) = 2.
(i) g71(B1) = Az € 7. Then g is continuous.
(ll) g_l(Bg) = Ag, g_l(Bg) = Ay, g_l(B4) = Ag € 77 but g_l(BQ) ¢ 7rv. Then
g is oy-Tr-continuous but not o;-77y-continuous.
(iii) g=1(Bs) = Az € 7 but g7 *(B5) ¢ 71 and g~ !(Bs) ¢ 77v. Then g is oy-7-
continuous but neither oy -77-continuous nor o-77y-continuous.

Theorem 4.4. Let (X,7),(Y,0) be the ITSs. Then

(1) f:(X,7) = (Y,0) is continuous if and only if f : (X,[]7) = (Y,] ]o) is
continuous,

(2) f:(X,7) = (Y,0) is continuous if and only if f : (X, < >71) = (Y, < > 0)
18 cOntinuous.

Proof. (1) Suppose f : (X,7) = (Y,0) is continuous and let (Vp,Vf) € [ Jo. Then
by the definition of [ Jo, there is V' € o such that [ |V = (Vp, V). Thus by the
hypothesis, f~1(V) € 7. So [ |f~1(V) = f~Y([]V) € [ ]r. Hence f : (X,[]7) =
(Y, [ ]o) is continuous.

Conversely, suppose f : (X,[]7) = (Y,[ ]o) is continuous and let V' € o. Then

clearly, [ ]V € [ ]Jo. Thus by the hypothesis, f~1([ V) = [ ]f~%(V) € [ ]r. So
(V) er. Hence f: (X,7) — (Y,0).
(2) The proof is similar to (1). O

Proposition 4.5. Let (X, 7) be the ITS such that 7 C IS.(X). Then 7 = 11y and
T=[lr=<>1.

Proof. By Result 2.11, it is clear that 7 C 77y. Let G € 17y. By Result 2.10, G €
N(prv), for each pry € G. Then there exists U,,, € 7 such that prv € U,,, C G.
Since 7 C IS.(X), p € (Up,, )1 and p ¢ (Up,, ) r. Thus
(UPIV)T = UpIVEG,pEUpIV)T{p} and (UPIV)F = ﬂpszG,pgéUpIV)F{p}c'
So G =U,,,eqUpiv €T le, 7rv C 7. Hence 7 = 7y
The proof of second part is clear. O

The followings are the immediate results of Propositions 4.2 and 4.5.

Corollary 4.6. Let (X, 7) be the ITS such that 7 C 1S.(X), (Y,0) be an ITS and
let f: X =Y be a mapping. Then

(1) f is continuous if and only if it is o~y -continuous,

(2) f is or-T-continuous if and only if it is or-Trv -continuous,

(3) f is ory-T-continuous if and only if it is oy -Trv -continuous.

The followings are the immediate results of Propositions 4.2, 4.5 and Corollary
4.6.

Corollary 4.7. Let (X,7),(Y,0) be the ITSs such that 7 C I1S.(X), o C 15.(Y)
and let f: X =Y be a mapping. Then the followings are equivalent:
12
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(1) f is continuous,
(2) f is o-Trv-continuous,
(3) f is oy -Trv -continuous.

Definition 4.8. Let (X,7),(Y,0) be an ITSs and let p € Y. Then a mapping
f+X =Y issaid to be:
(i) T-o-open, if it is open in the sense of Definition 3.6,
ii)’ 7-0-closed, if it is closed in the sense of Definition 3.6,
ii) 7-or-open, if f(U) € oy, for each U € 7,
i) 7-07-closed, if f(F) e IC,,(Y), for each F € IC,(X),
iii) 7-oy-open, if f(U) € orv, for each U € 7,
ili) 7-ory-closed, if f(F) € IC,,, (Y), for each F € IC,(X),
) T-0-open, if f( ) € o, for each U € 7y,
)

Tr-0-closed, if f(F) € IC,(Y), for each F € IC,, (X)),

/

(

(

(

(

(

(iv
(iv
(v) Tr-or-open, if f(U) € oy, for each U € 77,

(v) 1r-o-closed, if f(F) € IC,,(Y), for each F € IC,,(X),
(Vl) Tr-orv-open, if f(U) € oy, for each U € 14,

(vi)" r7-opv-closed, if f(F) € IC,,, (Y), for each F € IC,,(X),
(vii) Trv-o-open, 1f f(U) € g, for each U € 71y,

(vii)" Ty-closed, if f(F) € IC,(Y), for each F € IC,,, (X),
(vm) Trv-or-open, if f(U) € oy, for each U € 71y,

(viii)" 7rv-o7-closed, if f(F) € IC,,(Y), for each F € IC,,, (X),
(ix) Trv-o-open, if f( ) € o, for each U € 77y,

(ix)" 7rv-o-closed, if f(F) € IC,(Y), for each F € IC,,, (X),

(X) Trv-or-open, if f(U) € oy, for each U € 77y,

(X) Trv-or-closed, if f(F) € IC,,(Y), for each F € IC,,,,(X),
(Xl) Trv-oryv-open, if f(U) € oy, for each U € 7y,

(xi)" Trv-ory-closed, if f(F) € IC,,, (Y), for each F € IC,,, (X).

The followings are the immediate results of Definition 4.8, and Results 2.11 and
2.12.

Proposition 4.9. Let (X,7),(Y,0) be an ITSs, p € Y and let f : X — Y be a
mapping.
(1) If f is open, then it is both T-or-open and -0y -open.
2) If f is closed, then it is both T-o1-closed and -0y -closed.
) If f is Tr-0-open, then it is both Tr-or-open and Tr-ory -open.
)
)

The followings explain relationships among types of intutionistic openness and
closedness.

Example 4.10. Let X = {1,2,3,4,5}, Y = {a,b,¢,d} and consider ITs (X, 7) and
o on X and Y, respectively given by:

T = {¢IaXI7AlaA27A37A4}7 o= {¢I7Y[7Bla327B3aB4}a
13
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where
A= ({17273}7 {5})7 Ay = ({3}7 {4})a Az = ({3}’ {4’5})a Ay = ({15273}a ¢)7
By = ({aab}a {d})7 By = ({b}’ {C})a Bs = ({b}> {Cv d})7 By = ({a’ b}ad))'

Then clearly,
= ({5}’ {1’273})aF2 = ({4}7{3})7FS = ({4a5}a {3})7F4 = (¢7 {17253}) € IC(X)

and

Ey = ({d}v {a7b})7 Ey, = ({C}’ {b}), E3 = ({Cv d}7 {b})v E, = (¢a {aab}) € IO(Y)

Furthermore, 71 = 7 U {A5, A} USx, Trv = TU{A7, -+, A15}
and
o1 =0U{Bs,Bs} USy, oy =0 U{By,---, Bis},

where A5 = ({3}7¢)7A6 = ({3}7{5})7%X = {(¢7 S) 1S C X}’
A7 = ({17273a4}7 {5})7 Ag = ({173}7 {4})7 Ag = ({273}7 {4})7
Ao = ({3,5}7{4})a Ay = ({1a273}’ {4})a App = ({2,375}7{4}),
Az = ({1727375}7 {4})7 Ay = ({173}7 {4’5})5 As = ({273}7 {475})’
A16 = ({17273}7 {475})7 A17 = ({1527374}7¢)a A18 = ({17273’5}7¢)
and
Bs = ({b}7¢)7 Bg = ({b}v{d})a Sy = {(¢a S) 15 C Y}v
Br = ({a>b7 C}’ {d})> By = ({a7b}’ {C})a By = ({b7 d}> {C}),
Bio = ({a’bad}’ {C})’ B = ({a’ b}a {C) d})> Biy = ({a,b7 C}a(b)
Bis = ({a’bv d}v¢)
Thus IO.,-I(X) = IC(X) U {F5,F6} US%, [CTIV(X) = IC(X) @] {F7, e ,Flg}
and

I1C,,(Y)=ICy U{Es,Es} USYS,, IC,,,(Y)=ICy U{E;,---,FEi3},

where F5 = (¢,{3}), Fs = ({5}, {3}), 3% ={(5,¢) : § C X},
Fr = ({5}7 {1’27374})7 Fs = ({4}’ {1’3})v Fy = ({4}) {233})7
Fio = ({4}7 {375}7 Iy = ({4}7 {17273})7 I = ({4}7 {27375})a
Fiz = ({4}7 {1727335})3 iy = ({475}a {1a3})7 Fi5 = ({475}7 {2’3})7
Fig = ({475}7 {17273})a Fi7 = (¢7 {1727374})7 Fig = (¢7 {1727375})
and
By = (6. (b)), Es = ({d}, {8}), 9% = {(S.0): S ¥},
Er = ({d}’ {a" b, C})7 Es = ({C}v {a7b})v Ey = ({C}’ {b’ d}),
Eyo = ({C}v {a,b,d}), E = ({Cv d}? {avb})7 Eqp = (¢a {av b, C}),
Eys = ((ba {aabad})'
Let f, g, h: X — Y be the mappings defined by:

f)=a,f(2) = f(3) =0b,f(4) = ¢, f(5) =d,
9(1) =a,9(2) = g(5) = d,g(3) = b,g(4) =,
h(1) = h(2) = a,h(3) = b,h(4) = ¢, h(5) =d.
Then we can easily check the followings:
(i) f is both open and 7;-0-closed but not closed; f is both 7;-07-open and 7;-

or-open; f is Tyy-ory-open but not 7y -0y -closed.
14



4

=

6
467

469
470
471

472
473
474
475
476
477

478
479

481
482

483
484
485

J. G. Lee et al./Ann. Fuzzy Math. Inform. x (201y), No. x, xx—xx

(i) g is 7-oyv-open but neither open nor T-or-open; g is 7/-oy-open but neither
Tr-o-open nor 7r-or-open; g is Trv-ory-open but neither Try-o-open nor 7yy-og-
open; g is both closed and 77-07-closed but neither 7;-o-closed nor 7;-07y-closed; g
is 7rv-oy-closed but neither 77y -0-closed nor 77y-07-closed.

(iii) h is both open and closed; h is both 77-o7-open and 77-o7-closed; h is both
Trv-ory-open and 7y -oy-closed.

Example 4.11. Let X = {1,2,3,4}, Y = {a,b,c} and consider ITs (X,7) and o
on X and Y, respectively given by:

7={¢1, X1, A1, Ay, A3, Ay}, o = {61,Y1, By, Ba, Bs, B},
where
Ar = ({1,2},{3}), A2 = ({1,4},{3}), As = ({1},{2,3}), As = ({1,2,4},{3}),
Br = ({a,b},{c}), B2= ({b},{a}), Bs = ({b}.{a,c}), Bs= ({a,b},9).

Then clearly,
= ({3}7 {172})aF2 = ({3}7 {174})7F3 = ({273}7 {1})7F4 = ({3}’ {1’2’4}) € IC(X)

and
By = ({c},{a,b}), B2 = ({a},{b}), E5 = ({a,c},{b}), Ea = (0,{a,b}) € IC(Y).
Furthermore, 71 = 7 U {45, -+ , A12} USx, 71v = 7 U {A13}
and

U[ZUU{B5,BG}U%y, 0'[\/:0'U{B7}7

where A5 = ({1,2},¢), As = ({1,4}, {2}), Az = ({1,4},{3}),
Ag = ({1’4}7¢)7 Ag = ({1}’ {2})7A10 = ({1}’ {3})7A11 = ({1}7¢)a
4 App = ({17274}7¢)7 Sx = {(¢7 S) 18 C X}7A13 = ({1a274}a {3})

Bs = ({b},9), Bs = ({b},{c}), Sy ={(#,5): 5 C Y}, Br = ({a,b, ¢}, {d}).

Thus IC.,—I(X) = [C(X) @] {F5, s 7F12} @] %S(, 1C5,,
and

(X) = IC(X) U {F13}

ICUI (Y) =ICy U {Eg,7 EG} U %§/7 ICUIV (Y) =ICy U {E7},

where F5 = (¢7 {172})7F6 = ({Q}a {1a4})aF7 = ({3}7 {174}) Fs = (¢a {1a4})7
Fy = ({2}7 {1})7F10 = ({3}7 {1}7 Fi = (¢7 {1})7 Fip = (¢7 {17274})7
%3( = {(S?¢) 15 C X}aFIS = ({4}7{1’2’375})
and
Es = (¢,{b}), Ee = ({c}.{b}), S5 ={(5,¢): S CY}, Er=({d},{a,b,c}).
Let f: X — Y be the mappings defined by:

FA)=f@2)=bf3)=f(4) =a

Then we can easily check that:
f is T-or-open but neither 7-0;-closed nor open. In fact, f is neither the remain-
der’s type open nor the remainder’s type closed.
15
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5. INTUITIONISTIC SUBSPACES

In this section, we introduce the notions of an intuitionistic subspace and the
heredity, and obtain some properties of each concept.

Definition 5.1 ([6]). Let (X,7) be an ITS.
(i) A subfamily 8 of 7 is called an intutionistic base (in short, IB) for 7, if for
each A € 7, A = ¢; or there exists B C B such that A = Uﬂ,.
(ii) A subfamily o of 7 is called an intutionistic subbase (in short, ISB) for 7, if
the family 8 = {(o : o is a finite subset of o} is a base for .
In this case, the IT 7 is said to be generated by o. In fact, 7 = {¢;} U{US :
g c By
Example 5.2. (1) ([6], Example 3.10) Let 0 = {((a,b), (=00, a]) : a,b € R} be the
family of ISs in R. Then o generates an IT 7 on R, which is called the “usual left
intuitionistic topology” on R. In fact, the IB § for 7 can be written in the form
B ={Rr} Uo and 7 consists of the following ISs in R:
ér, Ry;
(U(aj’ bj)> (_007 C])v
where a;,b;,c € R, {a; : j € J} is bounded from below, ¢ < inf{a; : j € J};
(Ulay, b5), 0),
where a;,b; € R, {a; : j € J} is not bounded from below.
Similarly, one can define the “usual right intuitionistic topology” on R using an

analogue construction.
(2) ([6], Example 3.11) Consider the family o of ISs in R

o ={((a,b),(—00,a1]U[b1,00)) : a,b,a1,b; € R,a; < a,b; < b}.

Then o generates an IT 7 on R, which is called the “usual intuitionistic topology”
on R. In fact, the IB 3 for 7 can be written in the form 8 = {R;} U o and the
elements of 7 can be easily written down as in the above example.

(3) ([11], Example 3.10 (3)) Consider the family o7o 1) of ISs in R

op0,1] = {([a, ], (=00,a) U (b,00)) :a,b e Rand 0 < a < b < 1}

Then og 1) generates an IT 7 1) on R, which is called the “usual unit closed interval
intuitionistic topology” on R. In fact, the IB g 1) for 7)o 1) can be written in the
form Sjo,1) = {R} Uopg,1) and the elements of 7 can be easily written down as in the
above example.

In this case, ([0,1],7j,1)) is called the “intuitionistic usual unit closed interval”
and will be denoted by [0, 1], where [0, 1]; = ([0, 1], (=00, 0) U (1, 00)).

Definition 5.3 ([11]). Let a,b € R such that a <b. Then
(i) (the closed interval) [a,b]; = ([a,b], (—o0,a) U (b, 00)),
(ii) (the open interval) (a,b); = ((a,b), (=00, a] U [b, 00)),
(iii) (the half open interval or the half closed interval)
(CL, bh = ((CL, b]’ (_007 a] U (b7 OO))7 [CL, b)l = ([a’ b)? (—OO, CL) U [bv OO))a
(iv) (the half intuitionistic real line)
(—007 ah = ((—OO, a’]v (a‘7 OO)), —09, a’)I = ((—OO, a)7 [a7 OO))v
[CL, 00) = ([av 00), (—00,a)), (a,
(v) (the intuitionistic real line) (—oo,
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Definition 5.4. Let (X, 7) be a ITS and let A € I5(X). Then the collection
TAa={UNA:Ue€er}
is called the subspace topology or relative topology on A.
Example 5.5. (1) Let 7={U CR:0; € U or U = ¢r} and let
A=([1,2],((—00,1),(2,00)) € IS(R).
Then we can easily show that 7 is an IT on R and 74 is the subspace topology on

A.
(2) Let X = {a,b,c,d} be a set and consider the IT 7 given by:

T = {¢I7XI7A17A2;A37A4}7

where A; = ({(1, b}7 {C})7 Ay = ({aa C}a {ba d})a A3 = ({(1}, {ba ¢, d})7 Ay = ({aa ba C}7 ¢)
Let A = ({a,d}, {b,c}). Then
TA={orNAX;NA A NA A NA AsNA AyN A}
= {01, A, ({a},{b,c}), {a},{b, c,d}), {a}, {d})}.
(3) Let (R, 7) be the usual intuitionistic topological space. Consider
A= ([07 1]7 (70070) U (13 OO)) € IS(R)

Then 74 = 70,1

(4) Let 7 be the usual intuitionistic topology on R and let U C [0, 1]; such that
07,17 ¢ U. Then U € 79,1y if and only if U € 7. Suppose 0 < b < 1, for b € R.
Consider (—1,b); = ((—=1,b), (=00, b]U[b,00)) and (b,2); = ((b,2), (—00, b U[2, 00)).
Then (—1, b)[ N [0, 1][ = [0, b)] € T(o,1] and (b, 2)] N [0, 1][ = (b, 1][ € To,1]- Thus

B={(ab):0<a<b<1yU{[0,b);:0<b<1}U{(b1];:0<b<1}

is a base for 7yg 1.

(5) Let 7 ={U C IS(R) : 0 € U or U = ¢;}. Then we can easily prove that
7 is an IT on R. Let A = [1,2]; € IS(R) and let zj,z;v € A. Then clearly,
{O[,I[,I[v} € 7 and {O[7I],$IV} NA= {l‘],x]v} € 74. Thus 74 is the intuition-
istic discrete topology.

The following is the immediate result of Definition 5.4.

Proposition 5.6. Let (X,7) be an ITS and let A € 1S(X). Then T4 is an IT on
A.

Definition 5.7. Let (X,7) be a ITS, let A € IS(X) and let 74 be the subspace
topology on A. Then the pair (4, 74) is called a subspace of (X, 7) and each member
of 74 is called a relatively open set (in short, an open set in A).

Example 5.8. (1) Let (R,7) be the usual intuitionistic topological space. Then
tauy is the intuitionistic discrete topology on Z.

(2) If 7 is the intuitionistic discrete topology on a set X and A € IS(X), then 74
is the intuitionistic discrete topology on A.

(3) If 7 is the intuitionistic indiscrete topology on a set X and A € I5(X), then
T4 is the intuitionistic indiscrete topology on A.

The followings are the immediate results of Definition 5.4.
17
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Proposition 5.9. Let (X,7) be an ITS and let A,B € IS(X) such that A C B.
Then 74 = (Tp)a where (Tp)a denotes the subspace topology on A by Tp.

Proposition 5.10. Let (X,7) be an ITS, let A € IS(X) and let 5 be a base for T.
Then o ={BNA:B¢€ S} is a base for 74.

Proposition 5.11. Let (X,7) be an ITS and let A€ 7. IfU € 74, then U € 7.

Theorem 5.12. Let (X,7) be an ITS, let A, B € 15.(X) such that B C A. Then
B is closed in (A, 74) if and only if there exists F € IC(X) such that B= ANF.

Proof. Suppose B is closed in (A,74). Then A — B € 74. Thus there exists U € 7
such that A—B = ANB°¢ = AﬁU, i.e., ATOBF = ATQUT and AFUBT = AFUUF.
Since B C A and A, B € 15,(X), we have By = Ar NUfp and Bp = Ap UUr, i.e.,
B=ANU°. Since U € 7, U® € IC(X). So B is closed in A.

Conversely, suppose there exists F' € IC(X) such that B= AN F. Then F* € 7.
Since A, B € 15.(X), it is clear that A— B = AN F° Thus A— B € 74. So B is
closed in A. O

The following is the immediate result of Theorem 5.12.

Corollary 5.13. Let (X, 7) be an ITS such that 7 C IS.(X), let A € IC(X) and
let Be€ IS.(X). If B is closed in A, then B € IC(X).

Proposition 5.14. Let (X,7) be an ITS such that 7 C 15,(X), let A, B € 15,(X)
such that B C A. Then cl.,(B) = ANIcl(B), where cl,,(B) denotes the closure of
B in (A, T4).

Proof. Since Icl(B) € IC(X), ANIcl(B) is closed in (A, 74). Since B C ANIcl(B)
and cl,,(B) =(|{F : F is closed in A and B C F}, cl;,(B) C AnIcl(B).

On the other hand, ¢l,, (B) is closed in A. Then by Theorem 5.12, there exists
F € IC(X) such that c¢l;,(B) = ANF. Since B C cl,;,(B), B C F. Thus
Icl(B) C F. So AnlIc(B) C ANF. Hence AN Ic(B) C cl,,(B). Therefore
cr,(B) = AN Icl(B). O

Theorem 5.15. Let (X,7) be an ITS, let A,U € IS(X) such that A C U and let
ac X.
(1) If a; € A, then U € N,,(ay) if and only if there exists V € N(ay) such that
U= ANV, where N.,(ar) denotes the set of all neighborhoods of ar in (A,Ta).
(2) If ary € A, then U € N, (ary) if and only if there exists V € N(ary) such
that U = ANV, where N.,(ay) denotes the set of all neighborhoods of ayy in
(A, 7a4).

Proof. Suppose U € N,,(ay). Then there exists G € 74 such that a; € G C U.
Since G € T4, there exists H € 7 such that G = AN H. Let V. = U U H. Then
clearly, af € H C V. Thus V € N(aj). Since G = ANH, U = ANV. So the
necessary condition holds.

The proof of the converse is easy.

(2) The proof is similar. O

Proposition 5.16. Let (X,7),(Y,0) be ITSs and let A€ IS(X),B e IS(Y).
(1) The inclusion mapping i : A — X is continuous.
18
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(2) If f : X =Y is continuous, then fla: A —Y is continuous.

(3) If f : X — B is continuous, then the mapping g : X — Y defined by g(z) =
f(z), for each x € X is continuous.

(4) If f: X =Y is continuous and f(X;) C B, then the mapping g : X — B
defined by g(x) = f(x), for each x € X is continuous.

Proof. (1) Let U € 7. Then clearly, ANU € 74 and i~ }(U) = ANU. Thus i is
continuous.

(2) Let U € o. Then clearly, f~*(U) € 7. Thus AN f~Y(U) € 74 and
(fla) 2 U) = AN f~YU). Thus (f|a)"Y(U) € 7. So f|a is continuous.

(3) Let U € 0. Then clearlyy, BNU € op. Since f : X — B is continuous,
f7Y(BNU) = f"1(U) € . Since g(x) = f(x), for each x € X, g~1(U) = f~1(U).
Thus g~ 1(U) € 7. So g is continuous.

(4) Let U € op. Then there is V € ¢ such that U = BNV. Since f: X — Y is
continuous, f~1(V) € 7. On the other hand,

g U) =g (B)NgT (V) =X nfH(V) = fH(V).
Thus g~ }(U) € 7. So g is continuous. O

Proposition 5.17. Let X,Y be ITSs, let f : X =Y be a mapping, let {U; : j €
J} C I10(X) such that X1 = U;c; U; and let flu, : Uj =Y is continuous, for each
j€J. Then so is f.

Proof. Let V € IO(Y) and let j € J. Then by the hypothesis, (f|v,)”""(V) €
I0(U;). Since U; € I0(X), by Proposition 5.16 (2), (f|y,)” (V) € IO(X). Thus
Y = Ujej(f‘Uj)_l(V) € I0(X). So f is continuous. O

Proposition 5.18. Let (X,7) be an ITS such that T C 15.(X), let (Y,0) be an
ITS, let A,B € IC(X) such that X; = AUB andlet f : A=Y, g: B =Y be
continuous such that f(x) = g(x), for each x € Ar N Br. Define h : X — Y as
follows:

h(z) = f(x),Vo € Ar and h(z) = g(x),Vx € Br.

Then h is continuous.

Proof. Let F € IC(Y). Since f: A — Y and g : B — Y are continuous, by Result
3.3, f7Y(F) is closed in A and g~!(F) is closed in B. Since A, B € IC(X), by
Corollary 5.13, f=Y(F),g~Y(F) € IC(X). On the other hand, h=*(F) = f~}(F)uU
g Y(F). Then h~!(F) € IC(X). Thus by Result 3.3, h is continuous. O

Definition 5.19. An intuitionistic topological property P is said to be hereditary
if every subspace of an ITS with P also has P.

For separation axioms in intuitionistic topological spaces, see [3, 12].

Proposition 5.20. (1) To(i) is hereditary, i.e., every subspace of a To(i)-space is
To(4).
(2) Ti(i) is hereditary, i.e., every subspace of a Ty(i)-space is Ty(2).
(3) Ta(i) is hereditary, i.e., every subspace of a Ta(i)-space is Ta(3).
19
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Proof. Let (X,7) be an ITS and let A € I5(X).

(1) Suppose (X, 1) is To(¢) and let 25 # yr € A. Then clearly, x # y € X. Thus
by the hypothesis, there exists U € 7 such that x; € U,y; ¢ U or x; ¢ U,y; € U.
Let V. = ANU. Then clearly, V € 74. Moreover, z; € V,y; ¢ V or x; ¢ V,y; € V.
Thus (A,74) is To(7).

(2) Suppose (X, 7) is T1(¢) and let z; # yr € A. Then clearly, = # y € X.
Thus by the hypothesis, there exists G,H € 7 such that 2; € G,yr ¢ G and
xr ¢ Hyr € H. Let U = ANG and let V.= AN H. Then clearly, U,V € 74.
Moreover, z; € U,yr ¢ U or x; ¢ V,yr € V. Thus (A,74) is T1(0).

(3) Suppose (X, 7) is T2(7) and let x5 # y; € A. Then clearly,  # y € X. Thus
by the hypothesis, there exists G, H € T such that z; € G,y; € H and GN H = ¢j.
Let U =ANG and let V.= AN H. Then clearly, U,V € 174. Since G\ H = ¢y,
UNV = ¢;. Moreover, x; € U and y;r € V. So (A,74) is Ta(i). O

Proposition 5.21. Let (X, 7) be an ITS such that T C 15.(X).

(1) Ts(i) is hereditary, i.e., every subspace of a Ts(i)-space is T5(3).

(2) An intuitionistic complete regqularity is hereditary, i.e., every subspace of in-
tuitionistic complete regular space is intuitionistic complete reqular.

Proof. (1) Suppose (X, 7) be T5(i) and let A € I5.(X). Since (X,7) is T1(¢), by
Proposition 5.20 (2), (A,74) is T1(4). Let B be closed in (A4, 74) such that x; € B€.
Then by Theorem 5.12, there exists F' € IC(X) such that B = ANF. Since x; € B¢,
xy € F°. Thus by hypothesis, there exist U,V € 7 such that F* C U, z; € V and
UNV =¢5. So ANUANV € 74 and (ANU)N(ANV) == ¢;. Moreover,
FCANU and zy € ANV. Hence (A,74) is T3(7).

(2) Suppose (X, 7) be an intuitionistic complete regular space and let A € I5,(X).
Since (X, 7) is Ty (i), by Proposition 5.20 (2), (A4, 74) is T1(¢). Let B be closed in A
such that x;y € B°. Then by Theorem 5.12, there exists F' € IC(X) such that B =
ANF. Since x; € B¢, x; € F°. Thus by the hypothesis, there exists a continuous
mapping f : X — [0,1]; such that f(z;) = 1; and f(y;) = 0y, for each y; € F. Since
f X —[0,1]; is continuous, by Proposition 5.16 (2), f|4 : A — [0, 1]; is continuous.
Let yy € B. Since B = ANF, yr € F. So fla(yr) = f(yr) = 0;. Moreover,
fla(zr) = f(xy) = 17. Hence (A, T4) is intuitionistic complete regular. O

Proposition 5.22. Let (X, 7) be an ITS such that 7 C I1S.(X) and let A € IC(X).
If (X, 1) is Ta(i), then (A, 7a) is Ty(3).

Proof. Suppose (X, 7) is T4(7) and let A € IC(X). Since (X, 7) is T4 (%), by Proposi-
tion 5.20 (2), (A, 74) is T1(4). Let B and C be closed in A such that BNC' = ¢;. Then
by Theorem 5.12, there exists Fy, Fy € IC(X) such that B = ANF; and C = ANFy.
Since A € IC(X), B,C € IC(X). Thus by the hypothesis, U,V € 7 such that
BCcU, CcVandUNV =ér. So ANU, ANV € 74 and (ANU) N (ANV) = ¢;.
Moreover, BC ANU and C C ANV. Hence (4, 74) is T4(4). O

6. CONCLUSIONS

In this paper, we mainly dealt with some properties of quotient mappings, various
types of continuities, open and closed mappings in intuitionistic topological spaces.
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In particular, we defined continuities, open and closed mappings under the global
sense but did not define them under the local sense.
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