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1. Introduction17

In 1996, Coker [5] introduced the concept of an intuitionistic set (called an in-18

tuitionistic crisp set by Salama et al.[17]) as the generalzation of an ordinary set19

and the specialization of an intuitionistic fuzzy set introduced by Atanassove [1].20

After that time, many researchers [2, 6, 7, 8, 16, 18] applied the notion to topology,21

and Selvanayaki and Ilango [19] studied homeomorphisms in intuitionistic topolog-22

ical spaces. In particular, Bayhan and Coker [3] investigated separtion axioms in23

intuitionistic topological spaces. And they [4] dealt with pairwise separation ax-24

ioms in intuitionistic topological spaces and some relationships between categories25

Dbl-Top and Bitop. Furthermore, Lee and Chu [15] introduced the category ITop26

and investigated some relationships between ITop and Top. Recently, Kim et al.27

[10] investigate the category ISet composed of intuitionistic sets and morphisms28

between them in the sense of a topological universe. Also, they [11, 12] studied29

some additional properties and give some examples related to closures, interiors in30

and separation axioms in intuitionistic topological spaces. Moreover, Lee at al [13]31

investigated limit points and nets in intuitionistic topological spaces and also they32

[14] studied intuitionistic equivalence relation.33
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In this paper, first of all, we define an intuitionistic quotient mapping and obtain34

its some properties. Second, we define some types continuities, open and closed35

mappings. And we investigate relationships among them and give some examples.36

Finally, we introduce the notions of an intuitionistic subspace and the heredity, and37

obtain some properties of each concept.38

2. Preliminaries39

In this section, we list the concepts of an intuitionistic set, an intuitionistic point,40

an intuitionistic vanishing point and operations of intuitionistic sets and some results41

obtained by [5, 6, 7, 11].42

Definition 2.1 ([5]). Let X be a non-empty set. Then A is called an intuitionistic
set (in short, IS) of X, if it is an object having the form

A = (AT , AF ),

such that AT ∩ AF = φ, where AT [resp. AF ] is called the set of members [resp.43

nonmembers] of A.44

In fact, AT [resp. AF ] is a subset of X agreeing or approving [resp. refusing or45

opposing] for a certain opinion, view, suggestion or policy.46

The intuitionistic empty set [resp. the intuitionistic whole set] of X, denoted by47

φI [resp. XI ], is defined by φI = (φ,X) [resp. XI = (X,φ)].48

In general, AT ∪AF 6= X.49

We will denote the set of all ISs of X as IS(X).50

It is obvious that A = (A, φ) ∈ IS(X) for each ordinary subset A of X. Then51

we can consider an IS of X as the generalization of an ordinary subset of X. Fur-52

thermore, it is clear that A = (AT , AT , AF ) is an neutrosophic crisp set in X, for53

each A ∈ IS(X). Thus we can consider a neutrosophic crisp set in X as the gener-54

alization of an IS of X. Moreover, we can consider an intuitionistic set in X as an55

intuitionistic fuzzy set in X from Remark 2.2 in [11].56

Definition 2.2 ([5]). Let A,B ∈ IS(X) and let (Aj)j∈J ⊂ IS(X).57

(i) We say that A is contained in B, denoted by A ⊂ B, if AT ⊂ BT and AF ⊃ BF .58

(ii) We say that A equals to B, denoted by A = B, if A ⊂ B and B ⊂ A.59

(iii) The complement of A denoted by Ac, is an IS of X defined as:

Ac = (AF , AT ).

(iv) The union of A and B, denoted by A ∪B, is an IS of X defined as:

A ∪B = (AT ∪BT , AF ∩BF ).

(v) The union of (Aj)j∈J , denoted by
⋃
j∈J Aj (in short,

⋃
Aj), is an IS of X

defined as: ⋃
j∈J

Aj = (
⋃
j∈J

Aj,T ,
⋂
j∈J

Aj,F ).

(vi) The intersection of A and B, denoted by A ∩B, is an IS of X defined as:

A ∩B = (AT ∩BT , AF ∪BF ).
2
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(vii) The intersection of (Aj)j∈J , denoted by
⋂
j∈J Aj (in short,

⋂
Aj), is an IS

of X defined as: ⋂
j∈J

Aj = (
⋂
j∈J

Aj,T ,
⋃
j∈J

Aj,F ).

(viii) A−B = A ∩Bc.60

(ix) [ ]A = (AT , AT
c), < > A = (AF

c, AF ).61

From Propositions 3.6 and 3.7 in [10], we can easily see that (IS(X),∪,∩,c , φI , XI)
is a Boolean algebra except the following conditions:

A ∪Ac 6= XI , A ∩Ac 6= φI .

However, by Remark 2.12 in [11], (IS∗(X),∪,∩,c , φI , XI) is a Boolean algebra,
where

IS∗(X) = {A ∈ IS(X) : AT ∪AF = X}.

Definition 2.3 ([5]). Let f : X → Y be a mapping, and let A ∈ IS(X) and62

B ∈ IS(Y ). Then63

(i) the image of A under f , denoted by f(A), is an IS in Y defined as:

f(A) = (f(A)T , f(A)F ),

where f(A)T = f(AT ) and f(A)F = (f(AcF ))c.64

(ii) the preimage of B, denoted by f−1(B), is an IS in X defined as:

f−1(B) = (f−1(B)T , f
−1(B)F ),

where f−1(B)T = f−1(BT ) and f−1(B)F = f−1(BF ).65

Result 2.4. (See [5], Corollary 2.11) Let f : X → Y be a mapping and let A,B,C ∈66

IS(X), (Aj)j∈J ⊂ IS(X) and D,E, F ∈ IS(Y ), (Dk)k∈K ⊂ IS(Y ). Then the67

followings hold:68

(1) if B ⊂ C, then f(B) ⊂ f(C) and if E ⊂ F , then f−1(E) ⊂ f−1(F ).69

(2) A ⊂ f−1f(A)) and if f is injective, then A = f−1f(A)),70

(3) f(f−1(D)) ⊂ D and if f is surjective, then f(f−1(D)) = D,71

(4) f−1(
⋃
Dk) =

⋃
f−1(Dk), f−1(

⋂
Dk) =

⋂
f−1(Dk),72

(5) f(
⋃
Aj) =

⋃
f(Aj), f(

⋂
Aj) ⊂

⋂
f(Aj),73

(6) f(A) = φI if and only if A = φI and hence f(φI) = φI , in particular if f is74

surjective, then f(XI) = YI ,75

(7) f−1(YI) = YI , f−1(φI) = φI .76

(8) if f is surjective, then f(A)c ⊂ f(Ac) and furthermore, if f is injective, then77

f(A)c = f(Ac),78

(9) f−1(Dc) = (f−1(D))c.79

Definition 2.5 (See [5]). Let X be a non-empty set, a ∈ X and let A ∈ IS(X).80

(i) The form ({a}, {a}c) [resp. (φ, {a}c)]is called an intuitionistic point [resp.81

vanishing point] of X and denoted by aI [resp. aIV ].82

(ii) We say that aI [resp. aIV ] is contained in A, denoted by aI ∈ A [resp.83

aIV ∈ A], if a ∈ AT [resp. a /∈ AF ].84

85

We will denote the set of all intuitionistic points or intuitionistic vanishing points86

in X as IP (X).87

3
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Definition 2.6 ([6]). Let X be a non-empty set and let τ ⊂ IS(X). Then τ is88

called an intuitionistic topology (in short IT) on X, it satisfies the following axioms:89

(i) φI , XI ∈ τ,90

(ii) A ∩B ∈ τ, for any A,B ∈ τ,91

(iii)
⋃
j∈J Aj ∈ τ, for each (Aj)j∈J ⊂ τ .92

In this case, the pair (X, τ) is called an intuitionistic topological space (in short,93

ITS) and each member O of τ is called an intuitionistic open set (in short, IOS) in94

X. An IS F of X is called an intuitionistic closed set (in short, ICS) in X, if F c ∈ τ.95

It is obvious that {φI , XI} is the smallest IT on X and will be called the intuition-96

istic indiscreet topology and denoted by τI,0. Also IS(X) is the greatest IT on X97

and will be called the intuitionistic discreet topology and denoted by τI,1. The pair98

(X, τI,0) [resp. (X, τI,1)] will be called the intuitionistic indiscreet [resp. discreet]99

space.100

101

We will denote the set of all ITs on X as IT (X). For an ITS X, we will denote102

the set of all IOSs [resp. ICSs] on X as IO(X) [resp. IC(X)].103

Result 2.7 ([6], Proposition 3.5). Let (X, τ) be an ITS. Then the following two ITs
on X can be defined by:

τ0,1 = {[ ]U : U ∈ τ}, τ0,2 = {< > U : U ∈ τ}.
Furthermore, the following two ordinary topologies on X can be defined by (See

[3]):
τ1 = {UT : U ∈ τ}, τ2 = {U cF : U ∈ τ}.

We will denote two ITs τ0,1 and τ0,2 defined in Result 2.7 as

τ0,1 = [ ]τ and τ0,2 =< > τ.

Moreover, for an IT τ on a set X, we can see that (X, τ1, τ2) is a bitopological space104

by Kelly [9] (Also see Proposition 3.1 in [4]).105

Definition 2.8 ([7]). Let X be an ITS, p ∈ X and let N ∈ IS(X). Then106

(i) N is called a neighborhood of pI , if there exists an IOS G in X such that

pI ∈ G ⊂ N, i.e., p ∈ GT ⊂ NT and GF ⊃ NF ,
(ii) N is called a neighborhood of pIV , if there exists an IOS G in X such that

pIV ∈ G ⊂ N, i.e., GT ⊂ NT and p /∈ GF ⊃ NF .
We will denote the set of all neighborhoods of pI [resp. pIV ] by N(pI) [resp.107

N(pIV )].108

Result 2.9 ([11], Theorem 4.2). Let (X, τ) be an ITS and let A ∈ IS(X). Then109

(1) A ∈ τ if and only if A ∈ N(aI), for each aI ∈ A,110

(1) A ∈ τ if and only if A ∈ N(aIV ), for each aIV ∈ A.111

Result 2.10 ([7], Proposition 3.4). Let (X, τ) be an ITS. We define the families

τI = {G : G ∈ N(pI), for each pI ∈ G}
and

τIV = {G : G ∈ N(pIV ), for each pIV ∈ G}.
4
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Then τI , τIV ∈ IT (X).112

From the above Result, we can easily see that for an IT τ on a set X and each113

U ∈ τ ,114

τI = τ ∪ {(UT , SU ) : SU ⊂ UF } ∪ {(φ, S) : S ⊂ X}115

and116

τIV = τ ∪ {(SU , UF ) : SU ⊃ UT and SU ∩ UF = φ}.117

Result 2.11 ([7], Proposition 3.5). Let (X, τ) be an ITS. Then τ ⊂ τI and τ ⊂ τIV .118

Result 2.12 ([11], Corollary 4.6). Let (X, τ) be an ITS and let ICτ [resp. ICτI
and ICτIV ] be the set of all ICSs w.r.t. τ [resp. τI and τIV ]. Then

ICτ (X) ⊂ ICτI (X) and ICτ (X) ⊂ ICτIV (X).

Definition 2.13 ([6]). Let (X, τ) be an ITS and let A ∈ IS(X).119

(i) The intuitionistic closure of A w.r.t. τ , denoted by Icl(A), is an IS of X
defined as:

Icl(A) =
⋂
{K : Kc ∈ τ and A ⊂ K}.

(ii) The intuitionistic interior of A w.r.t. τ , denoted by Iint(A), is an IS of X
defined as:

Iint(A) =
⋃
{G : G ∈ τ and G ⊂ A}.

3. Intuitionistic quotient spaces120

In this section, we define an intuitionistic quotient mapping and obtain its some121

properties.122

Definition 3.1 ([6]). Let X,Y be an ITSs. Then a mapping f : X → Y is said to123

be continuous, if f−1(V ) ∈ IO(X), for each V ∈ IO(Y ).124

The following is the immediate result of by the above definition.125

Proposition 3.2. Let X,Y be ITSs. Then126

(1) the identity id : X → X is continuous,127

(2) if f : X → Y and g : Y → Z are continuous, then g◦f : X → Z is continuous,128

(3) if f : X → Y is a constant mapping, then f is continuous,129

(4) if X is an intuitionistic discrete space, then f is continuous,130

(5) if Y is an intuitionistic indiscrete space, then f is continuous.131

Result 3.3 ([6], Proposition 4.4). f : X → Y is continuous if and only if f−1(F ) ∈132

IC(X), for each F ∈ IC(Y ).133

Result 3.4 ([6], Proposition 4.5). The followings are equivalent:134

(1) f : X → Y is continuous,135

(2) f−1(Iint(B)) ⊂ Iint(f−1(B)), for each B ∈ IS(Y ),136

(3) Icl(f−1(B)) ⊂ f−1(Icl(B)), for each B ∈ IS(Y ).137

Result 3.5 ([15], Theorem 3.1). The followings are equivalent:138

(1) f : X → Y is continuous,139

(2) f(Icl(A)) ⊂ Icl(f(A)), for each a ∈ IS(X).140

5
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Definition 3.6. Let X,Y be ITSs. Then a mapping f : X → Y is said to be:141

(i) open [6], if f(A) ∈ IO(Y ), for each A ∈ IO(X),142

(ii) closed [15], if f(F ) ∈ IC(Y ), for each F ∈ IC(X).143

The following is the immediate result of the above definition.144

Proposition 3.7. Let X,Y be an ITSs.145

(1) f : X → Y and g : Y → Z are open [resp. closed], then g ◦ f : X → Z is open146

[resp. closed].147

(2) If both X and Y are intuitionistic discrete spaces, then f is continuous and148

open.149

Result 3.8 ([15], Theorem 3.2). f : X → Y be continuous and injective. Then150

Iintf(A) ⊂ f(Iint(A)), for each A ∈ IS(X).151

Result 3.9 ([15], Theorem 3.4). Let X,Y be ITSs. Then the followings are equiv-152

alent:153

(1) f : X → Y is open,154

(2) f(Iint(A)) ⊂ Iint(f(A)), for each A ∈ IS(X),155

(3) Iint(f−1(B)) ⊂ f−1(Iint(B)), for each B ∈ IS(Y ).156

The following is the immediate result of Results 3.8 and 3.9.157

Corollary 3.10. f : X → Y be continuous, open and injective. Then Iintf(A) =158

f(Iint(A)), for each A ∈ IS(X).159

Result 3.11 ([15], Theorem 3.8). Let X,Y be ITSs and f : X → Y a mapping.160

Then f is closed if and only if Iclf(A)) ⊂ f(Icl(A)), for each A ∈ IS(X).161

The following is the immediate result of Results 3.5 and 3.11.162

Corollary 3.12. Let X,Y be ITSs and f : X → Y a mapping. Then f is continuous163

and closed if and only if Iclf(A)) = f(Icl(A)), for each A ∈ IS(X).164

Proposition 3.13. Let (X, τ) be an ITS, let Y be a set and let f : X → Y be a
mapping. We define a family τY ⊂ IS(Y ) as follows:

τY = {U ∈ IS(Y ) : f−1(U) ∈ τ}.
Then165

(1) τY ∈ IT (Y ),166

(2) f : (X, τ)→ (Y, τY ) is continuous,167

(3) if σ is an IT on Y such that f : (X, τ) → (Y, σ) is continuous, then τY is168

finer than σ, i.e., σ ⊂ τY .169

Proof. (1) From Result 2.4 and the definition of an IT, we can easily show that170

τY ∈ IT (Y ).171

(2) It is obvious that f : (X, τ)→ (Y, τY ) is continuous, by the definition τY .172

(3) Let U ∈ σ. Since f : (X, τ)→ (Y, σ) is continuous, f−1(U) ∈ τ . Then by the173

definition τY , U ∈ τY . Thus σ ⊂ τY . �174

Definition 3.14. Let (X, τ) be an ITS, let Y be a set and let f : X → Y be175

a surjective mapping. Let τY = {U ∈ IS(Y ) : f−1(U) ∈ τ} be the IT on Y176

in Proposition 3.13. Then τY is called the intuitionistic quotient topology on Y177

6
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induced by f . The pair (Y, τY ) is called an intuitionistic quotient space of X and f178

is called an intuitionistic quotient mapping.179

From Proposition 3.13, the intuitionistic quotient mapping f is not only continu-180

ous but τY is the finest topology on Y for which f is continuous. It is easy to prove181

that if (Y, σ) is an intuitionistic quotient space of (X, τ) with intuitionistic quotient182

mapping f , then F is closed in Y if and only if f−1(F ) is closed in X.183

Proposition 3.15. Let (X, τ) and (Y, σ) be ITSs, let f : X → Y be a continuous184

surjective mapping and let τY be the intuitionistic quotient topology on Y induced185

by f . If f is open or closed, then σ = τY .186

Proof. Suppose f is open. Since τY is the finest topology on Y for which f is187

continuous, σ ⊂ τY . Let U ∈ τY . Then by the definition of τY , f−1(U) ∈ τ . Since f188

is open and surjective, U = f(f−1(U)) ∈ σ. Thus U ∈ σ. So τY ⊂ σ. Hence σ = τY .189

Suppose f is closed. Then by the similar arguments, we can see that σ = τY . �190

From Proposition 3.15, we can easily see that if f : (X, τ) → (Y, σ) is open (or191

closed) continuous surjective, then f is an intuitionistic quotient mapping.192

The following is the immediate result of Definition 3.14.193

Proposition 3.16. The composition of two intuitionistic quotient mappings is an194

intuitionistic quotient mapping.195

Theorem 3.17. Let (X, τ) be an ITS, let Y be a set, let f : X → Y be a surjection,196

let τY be the intuitionistic quotient topology on Y induced by f and let (Z, σ) be an197

ITS. Then a mapping g : Y → Z is continuous if and only if g ◦ f : X → Z is198

continuous.199

Proof. Suppose g : Y → Z is continuous. Since f : (X, τ) → (Y, τY ) is continuous,200

by Proposition 3.2 (2), g ◦ f : (X, τ)→ (Z, σ) is continuous.201

Suppose g◦f : (X, τ)→ (Z, σ) is continuous and let V ∈ σ. Then (g◦f)−1(V ) ∈ τ202

and (g ◦ f)−1(V ) = f−1(g−1(V )). Thus by the definition of τY , g−1(V ) ∈ τY . So203

g : (Y, τY )→ (Z, σ) is continuous. �204

Theorem 3.18. Let (X, τ) and (Y, σ) be ITSs and let p : X → Y be continuous.205

Then p is an intuitionistic quotient mapping if and only if for each ITS (Z, η) and206

each mapping g : Y → Z, the continuity of g ◦ p implies that of g.207

Proof. The proof is similar to one of an ordinary topological space. �208

Theorem 3.19. Let (X, τ), (Y, σ) and (Z, η) be ITSs, let p : (X, τ) → (Y, σ) be an209

intuitionistic quotient mapping and let h : (X, τ) → (Z, η) be continuous. Suppose210

h ◦ p−1 is single-valued, i.e., for each y ∈ Y , h is constant on p−1(yI). Then211

(1) (h ◦ p−1) ◦ p = h and h ◦ p−1 is continuous,212

(2) h ◦ p−1 is open (closed) if and only if h(U) is open (closed), whenever U is213

open (closed) in X such that U = p−1(p(U)).214

Proof. (1) Let x ∈ X. Then xI ∈ p−1(p(xI)). Since h is constant on p−1(p(xI)),215

h(xI) = h(p−1(p(xI))). On the other hand, h(p−1(p(xI))) = [(h◦p−1)◦p](xI). Thus216

h = (h ◦ p−1) ◦ p. Since h is continuous and p is an intuitionistic quotient mapping,217

by Theorem 3.18, h ◦ p−1 is continuous.218

(2) The proof is similar to one of an ordinary topological space. �219

7
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Theorem 3.20. Let (X, τ), (Y, σ) and (Z, η) be ITSs, let p : (X, τ) → (Y, σ) be an220

intuitionistic quotient mapping and let g : Y → Z be sujective. Then g ◦ p is an221

intuitionistic quotient mapping if and only if g is an intuitionistic quotient mapping.222

Proof. The proof is similar to one of an ordinary topological space. �223

Definition 3.21 ([14]). Let X,Y be non-empty sets. Then R is called an intuition-
istic relation (in short, IR) from X to Y , if it is an object having the form

R = (RT , RF )

such that RT , RF ⊂ X × Y and RT ∩ RF = φ, where RT [resp. RF ] is called the224

set of members [resp. nonmembers] of R. In fact, R ∈ IS(X × Y ). In general,225

RT ∪RF 6= X × Y .226

In particular, R is called an intuitionistic relation on X, if R ∈ IS(X ×X).227

The intuitionistic empty relation [resp. the intuitionistic whole relation] on X,228

denoted by φR,I [resp. XR,I ], is defined by φR,I = (φ,X × X) [resp. XR,I =229

(X ×X,φ)].230

We will denote the set of all IRs on X [resp. from X to Y ] as IR(X ×X) [resp.231

IR(X × Y )].232

It is obvious that if R ∈ IR(X × Y ), then RT , RF are ordinary relations from233

X to Y and conversely, if Ro is an ordinary relation from X to Y , then (Ro, R
c
o) ∈234

IR(X × Y ).235

Definition 3.22 ([3]). Let X,Y be non-empty sets, let R ∈ IR(X × Y ) and let236

(p, q) ∈ X × Y .237

(i) (p, q)I is said to belong to R, denoted by (p, q)I ∈ R, if (p, q) ∈ RT .238

(ii) (p, q)IV is said to belong to R, denoted by (p, q)IV ∈ R, if (p, q) /∈ RF .239

Definition 3.23 ([14]). An IR R is called an intuitionistic equivalence relation (in240

short, IER) on X, if it satisfies the following conditins:241

(i) intuitionistic reflexive, i.e., RT is reflexive and RF is irreflexive, i.e., (x, x) /∈242

RF , for each x ∈ X,243

(ii) intuitionistic symmetric, i.e., RT and RF are symmetric,244

(iii) intuitionistic transitive, i.e., RT ◦RT ⊂ RT and RF ◦RF ⊃ RF , where ST ◦RT245

and denotes the ordinary composition and SF ◦RF = (ScF ◦RcF )c.246

We will denote the set of all IERs on X as IE(X).247

It is obvious that R ∈ IE(X) if and only if RT is an ordinary equivalence relation248

on X, RF is irreflexive and (RcF ◦RcF )c ⊃ RF .249

Definition 3.24 ([14]). Let R ∈ IE(X) and let x ∈ X. Then the intuitionistic
equivalence class (in short, IEC) of xI modulo R, denoted by RxI

or [xI ], is an IS
in X defined as:

RxI
=

⋃
{yI ∈ XI : (x, y)I ∈ R}.

In fact, RxI
=

⋃
{yI ∈ XI : (x, y) ∈ RT }.250

We will denote the set of all IECs by R as X/R and X/R = {RxI
: x ∈ X} will251

be called an intuionistic quotient set (in short, IQS) of X by R.252

Result 3.25 ([14], Proposition 4.23). Let f : X → Y be a mapping. Consider253

the IR Rf on X defined as: for each (x, y) ∈ X × X, (x, y)I ∈ Rf if and only if254

8
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f(xI) = f(yI). Then Rf ∈ IE(X).255

256

In this case, Rf is called the intuitionistic equivalence relation determined by f .257

Proposition 3.26. Let (X, τ) and (Y, σ) be ITSs, let f : (X, τ) → (Y, σ) be con-258

tinuous and let Rf be the intuitionistic equivalence relation on X determined by f .259

Then260

(1) the intuitionistic natural mapping p : (X, τ)→ (X/Rf , τX/Rf
) is an intuition-261

istic quotient mapping, where τX/Rf
denotes the intuitionistic quotient topology on262

X/Rf ,263

(2) f ◦ p−1 is continuous injective,264

(3) if f is surjective, then bijective.265

Proof. (1) It is obvious.266

(2) Suppose xI , yI ∈ p−1(z), for some z = [aI ] ∈ X/Rf . Then by the definition of267

Rf , f(xI) = f(yI). Thus f ◦ p−1 is single-valued. So by Theorem 3.19 (1), f ◦ p−1
268

is continuous.269

Now suppose [aI ], [bI ] ∈ X/Rf and f ◦p−1([aI ]) = f ◦p−1([bI ]). Let xI ∈ p−1([aI ])270

and yI ∈ p−1([bI ]). Then f(xI) = f(yI). Thus (x, y)I ∈ Rf . So [aI ] = p(xI) =271

p(yI) = [bI ]. Hence f ◦ p−1 is injective.272

(3) Suppose f is surjective and let y ∈ Y . Then there is x ∈ X such that f(x) = y.273

Since XI =
⋃
X/Rf , [xI ] ∈ X/Rf and f ◦p−1([xI ]) = yI . Thus f ◦p−1 is surjective.274

So by (2), f ◦ p−1 is bijective �275

Theorem 3.27. Let (X, τ) and (Y, σ) be ITSs and let f : (X, τ) → (Y, σ) be con-276

tinuous surjective. Then f ◦ p−1 : X/Rf → Y is a homeomorphism if and only if f277

is an intuitionistic quotient mapping.278

Proof. Suppose f ◦p−1 : (X/Rf , τX/Rf
→ (Y, σ) be a homeomorphism and let σY be279

the intuitionistic quotient topology on Y induced by f ◦ p−1. Then by Proposition280

3.13, σ = σY . Thus f ◦ p−1 is an intuitionistic quotient mapping. So by Theorem281

3.20, (f ◦ p−1) ◦ p is an intuitionistic quotient mapping. On the other hand, f =282

(f ◦ p−1) ◦ p. Hence f is an intuitionistic quotient mapping.283

Suppose f : (X, τ) → (Y, σ) is an intuitionistic quotient mapping. Since f is284

surjective, by Proposition 3.26 (3), f ◦ p−1 is bijective. Let U be any IOS in X/Rf285

such that U = p−1(p(U)). Since p−1(p(U)) = f−1(f(U)), f−1(f(U)) is open in X.286

Since f is an intuitionistic quotient mapping, f(U) ∈ τ . Then by Theorem 3.19 (2),287

f ◦ p−1 is open. Thus f ◦ p−1 is a homeomorphism. �288

Definition 3.28 ([14]). Let (Aj)j∈J ⊂ IS(X). Then (Aj)j∈J is called an intuition-289

istic partition of X, if it satisfies the following conditions:290

(i) Aj 6= φI , for each j ∈ J ,291

(ii) either Ai ∩Aj = φI or Ai = Aj , for any i, j ∈ J ,292

(iii)
⋃
j∈J Aj = XI .293

Now we turn our attention toward another way of defining an intuitionistic quo-294

tient space.295

Definition 3.29. Let (X, τ) be an ITS and let Σ be an intuitionistic partition of296

X. Let p : X → Σ be the mapping defined by: for each x ∈ X,297
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p(xI) = D and xI ∈ D, for some D ∈ Σ.298

If τΣ is the intuitionistic quotient topology on Σ induced by p, then (Σ, τΣ) is called299

an intuitionistic quotient space and p is called the intuitionistic natural mapping300

of X onto Σ. The set Σ is called an intuitionistic decomposition of X and the301

intuitionistic quotient space (Σ, τΣ) is called an intuitionistic decomposition space302

or an intuitionistic identification of X.303

Example 3.30. Let X = N, let A = ({n ∈ N : n is odd}, {n ∈ N : n is even}), B =304

({n ∈ N : n is even}, {n ∈ N : n is odd}) and let Σ = {A,B}. Consider the mapping305

p : X → Σ given by: for each n ∈ X,306

p(nI) = A, if n is odd and p(nI) = B, if n is even.307

Then clearly, Σ is an intuitionistic partition of X. Let τ be the usual intuitionistic308

topology on N and consider τN. Then clearly, τN is the intuitionistic discrete topology309

on N. Thus p−1(A), p−1(B) ∈ τN. So Σ is an intuitionistic decomposition of X.310

4. Some types of intuitionistic continuities311

In this section, we define some types continuities, open and closed mappings. And312

we investigate relationships among them and give some examples.313

Definition 4.1. Let (X, τ), (Y, σ) be an ITSs. Then a mapping f : X → Y is said314

to:315

(i) σ-τ -continuous, if it is continuous in the sense of Definition 3.1,316

(ii) σ-τI -continuous, if for each V ∈ σ, f−1(V ) ∈ τI ,317

(iii) σ-τIV -continuous, if for each V ∈ σ, f−1(V ) ∈ τIV ,318

(iv) σI -τ -continuous, if for each V ∈ σI , f−1(V ) ∈ τ ,319

(v) σI -τI -continuous, if for each V ∈ σI , f−1(V ) ∈ τI320

(vi) σI -τIV -continuous, if for each V ∈ σI , f−1(V ) ∈ τIV ,321

(vii) σIV -τ -continuous, if for each V ∈ σIV , f−1(V ) ∈ τ ,322

(viii) σIV -τI -continuous, if for each V ∈ σIV , f−1(V ) ∈ τI ,323

(ix) σIV -τIV -continuous, if for each V ∈ σIV , f−1(V ) ∈ τIV324

The followings are the immediate results of Definition 4.1 and Result 2.11.325

Proposition 4.2. Let (X, τ), (Y, σ) be an ITSs, f : X → Y be a mapping and let326

p ∈ X.327

(1) If f is continuous, then it is both σ-τI-continuous and σ-τIV -continuous.328

(2) If σI-τ -continuous, then both σI-τI-continuous and σI-τIV -continuous.329

(3) σIV -τ -continuous, then both σIV -τI-continuous and σIV -τIV -continuous.330

The followings explain relationships among types of intutionistic continuities.331

Example 4.3. (See Example 3.6 in [7]) (1) Let X = {a, b, c, d} and consider ITs τ
on X given by:

τ = {φI , XI , A1, A2, A3, A4},
where

A1 = ({a, b}, {d}), A2 = ({c}, {b, d}), A3 = (φ, {b, d}), A4 = ({a, b, c}, {d}).
Moreover,

τI = τ
⋃
{Ai : i = 5, 6, · · · , 23}, τIV = τ ∪ {A24, A25},
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where332

A5 = ({c}, {b}), A6 = ({c}, {d}), A7 = ({a, b}, φ), A8 = ({a, b, c}, φ),333

A9 = ({c}, φ), A10 = (φ, {a}), A11 = (φ, {b}), A12 = (φ, {c}),334

A13 = (φ, {d}), A14 = (φ, {a, b}), A15 = (φ, {a, c}), A16 = (φ, {a, d}),335

A17 = (φ, {b, c}), A18 = (φ, {c, d}), A19 = (φ, {a, b, c}), A20 = (φ, {a, b, d}),336

A21 = (φ, {a, c, d}), A22 = (φ, {b, c, d}), A23 = (φ, φ),337

A24 = ({a, c}, {b, d}), A25 = ({a}, {b, d}).338

Let Y = {1, 2, 3, 4, 5} and let us consider ITS (Y, σ) given by:

σ = {φI , XI , B1, B2},

where B1 = ({1, 2, 3}, {5}), B2 = ({3}, {4, 5}). Then we can easily find τI and τIV :

σI = σ ∪ {B3, B4, B5, B6} ∪ =,

where B3 = ({1, 2, 3}, φ), B4 = ({3}, {4}),B5 = ({3}, {5}), B6 = ({3}, φ),339

= = {(φ, S) : S ⊂ Y }
and

σIV = σ ∪ {B7, B8, B9, B10, B11, B12, B13, B14, B15, B16, B17, B18},
where B7 = ({1, 2, 3, 4}, {5}), B8 = ({1, 3}, {4, 5}), B9 = ({2, 3}, {4, 5}),340

B10 = ({1, 2, 3}, {4, 5}), B11 = ({1, 3}, {4}), B12 = ({2, 3}, {4}),341

B13 = ({1, 2, 3}, {4}), B14 = ({1, 3}, {5}), B15 = ({2, 3}, {5}),342

B16 = ({1, 2, 3}, {5}), B17 = ({1, 2, 3}, φ), B18 = ({1, 2, 3, 4}, φ).343

Now let f : X → Y be the mapping defined by:

f(a) = f(b) = 1, f(c) = 4, f(d) = 5.

(i) f−1(B1) = A1 ∈ τ, f−1(B2) = A18 ∈ τI . Then f is not continuous but344

σ-τI -continuous.345

(ii) We can easily see that f−1(U) ∈ τI , for each U ∈ σI . Then f is σI -τI -346

continuous.347

(iii) f−1(B1), f−1(B7) = ({a, b, c}, {d} /∈ τIV . Then f is neither σ-τIV -continuous348

nor σIV -τIV -continuous.349

(iv)f−1(B8) = ({a}, {c, d}) /∈ τI . Then f is not σIV -τI -continuous.350

(2) Let X = {a, b, c, d}, Y = {1, 2, 3, 4, 5} and consider ITs τ and σ on X and Y ,351

respectively given by:352

τ = {φI , XI , A1, A2, A3, A4}353

and354

σ = {φI , YI , B1},355

whereA1 = ({a, b}, {d}), A2 = ({b, d}, {a, c}), A3 = ({b}, {a, c, d}), A4 = ({a, b, d}, φ)356

and B1 = ({1, 2}, {3, 4}).357

Then358

τI = τ ∪ {Ai : i = 5, · · · , 15} ∪ =X and τIV = τ ∪ {A17},359

where A5 = ({a, b}, φ), A6 = ({b, d}, φ), A7 = ({b, d}, {a}), A8 = ({b, d}, {c}),360

A9 = ({b}, φ), A10 = ({b}, {a}), A11 = ({b}, {c}), A12 = ({b}, {d}),361

A13 = ({b}, {a, c}), A14 = ({b}, {a, d}), A15 = ({b}, {c, d}),362

=X = {(φ, S) : S ⊂ X}, A17 = ({a, b, c}, {d})363

and364

σI = σ ∪ {B2, B3, B4} ∪ =Y ,365
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σIV = σ ∪ {B5},366

where B2 = ({1, 2}, φ), B3 = ({1, 2}, {3}), B4 = ({1, 2}, {4}),367

=Y = {(φ, S) : S ⊂ Y }, B5 = ({1, 2, 5}, {3, 4}).368

Let g : X → Y be the mapping defined by:

g(a) = 3, g(b) = 1, g(c) = 4, g(d) = 2.

(i) g−1(B1) = A2 ∈ τ . Then g is continuous.369

(ii) g−1(B2) = A6, g
−1(B3) = A7, g

−1(B4) = A8 ∈ τI but g−1(B2) /∈ τIV . Then370

g is σI -τI -continuous but not σI -τIV -continuous.371

(iii) g−1(B5) = A2 ∈ τ but g−1(B5) /∈ τI and g−1(B5) /∈ τIV . Then g is σIV -τ -372

continuous but neither σIV -τI -continuous nor σ-τIV -continuous.373

Theorem 4.4. Let (X, τ), (Y, σ) be the ITSs. Then374

(1) f : (X, τ) → (Y, σ) is continuous if and only if f : (X, [ ]τ) → (Y, [ ]σ) is375

continuous,376

(2) f : (X, τ) → (Y, σ) is continuous if and only if f : (X,< > τ) → (Y,< > σ)377

is continuous.378

Proof. (1) Suppose f : (X, τ) → (Y, σ) is continuous and let (VT , V
c
T ) ∈ [ ]σ. Then379

by the definition of [ ]σ, there is V ∈ σ such that [ ]V = (VT , V
c
T ). Thus by the380

hypothesis, f−1(V ) ∈ τ . So [ ]f−1(V ) = f−1([ ]V ) ∈ [ ]τ . Hence f : (X, [ ]τ) →381

(Y, [ ]σ) is continuous.382

Conversely, suppose f : (X, [ ]τ) → (Y, [ ]σ) is continuous and let V ∈ σ. Then383

clearly, [ ]V ∈ [ ]σ. Thus by the hypothesis, f−1([ ]V ) = [ ]f−1(V ) ∈ [ ]τ . So384

f−1(V ) ∈ τ . Hence f : (X, τ)→ (Y, σ).385

(2) The proof is similar to (1). �386

Proposition 4.5. Let (X, τ) be the ITS such that τ ⊂ IS∗(X). Then τ = τIV and387

τ = [ ]τ =< > τ .388

Proof. By Result 2.11, it is clear that τ ⊂ τIV . Let G ∈ τIV . By Result 2.10, G ∈389

N(pIV ), for each pIV ∈ G. Then there exists UpIV ∈ τ such that pIV ∈ UpIV ⊂ G.390

Since τ ⊂ IS∗(X), p ∈ (UpIV )T and p /∈ (UpIV )F . Thus391

(UpIV )T =
⋃
pIV ∈G,p∈UpIV

)T
{p} and (UpIV )F =

⋂
pIV ∈G,p/∈UpIV

)F
{p}c.392

So G =
⋃
pIV ∈G UpIV ∈ τ , i.e., τIV ⊂ τ . Hence τ = τIV .393

The proof of second part is clear. �394

The followings are the immediate results of Propositions 4.2 and 4.5.395

Corollary 4.6. Let (X, τ) be the ITS such that τ ⊂ IS∗(X), (Y, σ) be an ITS and396

let f : X → Y be a mapping. Then397

(1) f is continuous if and only if it is σ-τIV -continuous,398

(2) f is σI-τ -continuous if and only if it is σI-τIV -continuous,399

(3) f is σIV -τ -continuous if and only if it is σIV -τIV -continuous.400

The followings are the immediate results of Propositions 4.2, 4.5 and Corollary401

4.6.402

Corollary 4.7. Let (X, τ), (Y, σ) be the ITSs such that τ ⊂ IS∗(X), σ ⊂ IS∗(Y )403

and let f : X → Y be a mapping. Then the followings are equivalent:404

12



J. G. Lee et al./Ann. Fuzzy Math. Inform. x (201y), No. x, xx–xx

(1) f is continuous,405

(2) f is σ-τIV -continuous,406

(3) f is σIV -τIV -continuous.407

Definition 4.8. Let (X, τ), (Y, σ) be an ITSs and let p ∈ Y . Then a mapping408

f : X → Y is said to be:409

(i) τ -σ-open, if it is open in the sense of Definition 3.6,410

(ii)
′
τ -σ-closed, if it is closed in the sense of Definition 3.6,411

(ii) τ -σI -open, if f(U) ∈ σI , for each U ∈ τ ,412

(ii)
′
τ -σI -closed, if f(F ) ∈ ICσI

(Y ), for each F ∈ ICτ (X),413

(iii) τ -σIV -open, if f(U) ∈ σIV , for each U ∈ τ ,414

(iii)
′
τ -σIV -closed, if f(F ) ∈ ICσIV

(Y ), for each F ∈ ICτ (X),415

(iv) τI -σ-open, if f(U) ∈ σ, for each U ∈ τI ,416

(iv)
′
τI -σ-closed, if f(F ) ∈ ICσ(Y ), for each F ∈ ICτI (X),417

(v) τI -σI -open, if f(U) ∈ σI , for each U ∈ τI ,418

(v)
′
τI -σI -closed, if f(F ) ∈ ICσI

(Y ), for each F ∈ ICτI (X),419

(vi) τI -σIV -open, if f(U) ∈ σIV , for each U ∈ τI ,420

(vi)
′
τI -σIV -closed, if f(F ) ∈ ICσIV

(Y ), for each F ∈ ICτI (X),421

(vii) τIV -σ-open, if f(U) ∈ σ, for each U ∈ τIV ,422

(vii)
′
τV -closed, if f(F ) ∈ ICσ(Y ), for each F ∈ ICτIV (X),423

(viii) τIV -σI -open, if f(U) ∈ σI , for each U ∈ τIV ,424

(viii)
′
τIV -σI -closed, if f(F ) ∈ ICσI

(Y ), for each F ∈ ICτIV (X),425

(ix) τIV -σ-open, if f(U) ∈ σ, for each U ∈ τIV ,426

(ix)
′
τIV -σ-closed, if f(F ) ∈ ICσ(Y ), for each F ∈ ICτIV (X),427

(x) τIV -σI -open, if f(U) ∈ σI , for each U ∈ τIV ,428

(x)
′
τIV -σI -closed, if f(F ) ∈ ICσI

(Y ), for each F ∈ ICτIV (X),429

(xi) τIV -σIV -open, if f(U) ∈ σIV , for each U ∈ τIV ,430

(xi)
′
τIV -σIV -closed, if f(F ) ∈ ICσIV

(Y ), for each F ∈ ICτIV (X).431

The followings are the immediate results of Definition 4.8, and Results 2.11 and432

2.12.433

Proposition 4.9. Let (X, τ), (Y, σ) be an ITSs, p ∈ Y and let f : X → Y be a434

mapping.435

(1) If f is open, then it is both τ -σI-open and τ -σIV -open.436

(2) If f is closed, then it is both τ -σI-closed and τ -σIV -closed.437

(3) If f is τI-σ-open, then it is both τI-σI-open and τI-σIV -open.438

(4) If f is τI-σ-closed, then it is both τI-σI-closed and τI-σIV -closed.439

(5) If f is τIV -σ-open, then it is both τIV -σI-open and τIV -σIV -open.440

(6) If f is τIV -σ-closed, then it is both τIV -σI-closed and τIV -σIV -closed.441

The followings explain relationships among types of intutionistic openness and442

closedness.443

Example 4.10. Let X = {1, 2, 3, 4, 5}, Y = {a, b, c, d} and consider ITs (X, τ) and
σ on X and Y , respectively given by:

τ = {φI , XI , A1, A2, A3, A4}, σ = {φI , YI , B1, B2, B3, B4},
13



J. G. Lee et al./Ann. Fuzzy Math. Inform. x (201y), No. x, xx–xx

where

A1 = ({1, 2, 3}, {5}), A2 = ({3}, {4}), A3 = ({3}, {4, 5}), A4 = ({1, 2, 3}, φ),

B1 = ({a, b}, {d}), B2 = ({b}, {c}), B3 = ({b}, {c, d}), B4 = ({a, b}, φ).

Then clearly,

F1 = ({5}, {1, 2, 3}), F2 = ({4}, {3}), F3 = ({4, 5}, {3}), F4 = (φ, {1, 2, 3}) ∈ IC(X)

and

E1 = ({d}, {a, b}), E2 = ({c}, {b}), E3 = ({c, d}, {b}), E4 = (φ, {a, b}) ∈ IC(Y ).

Furthermore, τI = τ ∪ {A5, A6} ∪ =X , τIV = τ ∪ {A7, · · · , A18}
and

σI = σ ∪ {B5, B6} ∪ =Y , σIV = σ ∪ {B7, · · · , B13},
where A5 = ({3}, φ), A6 = ({3}, {5}),=X = {(φ, S) : S ⊂ X},444

A7 = ({1, 2, 3, 4}, {5}), A8 = ({1, 3}, {4}), A9 = ({2, 3}, {4}),445

A10 = ({3, 5}, {4}), A11 = ({1, 2, 3}, {4}), A12 = ({2, 3, 5}, {4}),446

A13 = ({1, 2, 3, 5}, {4}), A14 = ({1, 3}, {4, 5}), A15 = ({2, 3}, {4, 5}),447

A16 = ({1, 2, 3}, {4, 5}), A17 = ({1, 2, 3, 4}, φ), A18 = ({1, 2, 3, 5}, φ)448

and449

B5 = ({b}, φ), B6 = ({b}, {d}), =Y = {(φ, S) : S ⊂ Y },450

B7 = ({a, b, c}, {d}), B8 = ({a, b}, {c}), B9 = ({b, d}, {c}),451

B10 = ({a, b, d}, {c}), B11 = ({a, b}, {c, d}), B12 = ({a, b, c}, φ)452

B13 = ({a, b, d}, φ).
Thus ICτI (X) = IC(X) ∪ {F5, F6} ∪ =cX , ICτIV (X) = IC(X) ∪ {F7, · · · , F18}
and

ICσI
(Y ) = ICY ∪ {E5, E6} ∪ =cY , ICσIV

(Y ) = ICY ∪ {E7, · · · , E13},

where F5 = (φ, {3}), F6 = ({5}, {3}),=cX = {(S, φ) : S ⊂ X},453

F7 = ({5}, {1, 2, 3, 4}), F8 = ({4}, {1, 3}), F9 = ({4}, {2, 3}),454

F10 = ({4}, {3, 5}, F11 = ({4}, {1, 2, 3}), F12 = ({4}, {2, 3, 5}),455

F13 = ({4}, {1, 2, 3, 5}), F14 = ({4, 5}, {1, 3}), F15 = ({4, 5}, {2, 3}),456

F16 = ({4, 5}, {1, 2, 3}), F17 = (φ, {1, 2, 3, 4}), F18 = (φ, {1, 2, 3, 5})457

and458

E5 = (φ, {b}), E6 = ({d}, {b}), =cY = {(S, φ) : S ⊂ Y },459

E7 = ({d}, {a, b, c}), E8 = ({c}, {a, b}), E9 = ({c}, {b, d}),460

E10 = ({c}, {a, b, d}), E11 = ({c, d}, {a, b}), E12 = (φ, {a, b, c}),461

E13 = (φ, {a, b, d}).462

Let f, g, h : X → Y be the mappings defined by:

f(1) = a, f(2) = f(3) = b, f(4) = c, f(5) = d,

g(1) = a, g(2) = g(5) = d, g(3) = b, g(4) = c,

h(1) = h(2) = a, h(3) = b, h(4) = c, h(5) = d.

Then we can easily check the followings:463

(i) f is both open and τI -σ-closed but not closed; f is both τI -σI -open and τI -464

σI -open; f is τIV -σIV -open but not τIV -σIV -closed.465
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(ii) g is τ -σIV -open but neither open nor τ -σI -open; g is τI -σIV -open but neither466

τI -σ-open nor τI -σI -open; g is τIV -σIV -open but neither τIV -σ-open nor τIV -σI -467

open; g is both closed and τI -σI -closed but neither τI -σ-closed nor τI -σIV -closed; g468

is τIV -σIV -closed but neither τIV -σ-closed nor τIV -σI -closed.469

(iii) h is both open and closed; h is both τI -σI -open and τI -σI -closed; h is both470

τIV -σIV -open and τIV -σIV -closed.471

Example 4.11. Let X = {1, 2, 3, 4}, Y = {a, b, c} and consider ITs (X, τ) and σ
on X and Y , respectively given by:

τ = {φI , XI , A1, A2, A3, A4}, σ = {φI , YI , B1, B2, B3, B4},

where

A1 = ({1, 2}, {3}), A2 = ({1, 4}, {3}), A3 = ({1}, {2, 3}), A4 = ({1, 2, 4}, {3}),

B1 = ({a, b}, {c}), B2 = ({b}, {a}), B3 = ({b}, {a, c}), B4 = ({a, b}, φ).

Then clearly,

F1 = ({3}, {1, 2}), F2 = ({3}, {1, 4}), F3 = ({2, 3}, {1}), F4 = ({3}, {1, 2, 4}) ∈ IC(X)

and

E1 = ({c}, {a, b}), E2 = ({a}, {b}), E3 = ({a, c}, {b}), E4 = (φ, {a, b}) ∈ IC(Y ).

Furthermore, τI = τ ∪ {A5, · · · , A12} ∪ =X , τIV = τ ∪ {A13}
and

σI = σ ∪ {B5, B6} ∪ =Y , σIV = σ ∪ {B7},
where A5 = ({1, 2}, φ), A6 = ({1, 4}, {2}), A7 = ({1, 4}, {3}),472

A8 = ({1, 4}, φ), A9 = ({1}, {2}), A10 = ({1}, {3}), A11 = ({1}, φ),473

A12 = ({1, 2, 4}, φ), =X = {(φ, S) : S ⊂ X}, A13 = ({1, 2, 4}, {3})474

and475

B5 = ({b}, φ), B6 = ({b}, {c}), =Y = {(φ, S) : S ⊂ Y }, B7 = ({a, b, c}, {d}).476

477

Thus ICτI (X) = IC(X) ∪ {F5, · · · , F12} ∪ =cX , ICτIV (X) = IC(X) ∪ {F13}
and

ICσI
(Y ) = ICY ∪ {E5, E6} ∪ =cY , ICσIV

(Y ) = ICY ∪ {E7},
where F5 = (φ, {1, 2}), F6 = ({2}, {1, 4}), F7 = ({3}, {1, 4}) F8 = (φ, {1, 4}),478

F9 = ({2}, {1}), F10 = ({3}, {1}, F11 = (φ, {1}), F12 = (φ, {1, 2, 4}),479

=cX = {(S, φ) : S ⊂ X}, F13 = ({4}, {1, 2, 3, 5})480

and481

E5 = (φ, {b}), E6 = ({c}, {b}), =cY = {(S, φ) : S ⊂ Y }, E7 = ({d}, {a, b, c}).482

Let f : X → Y be the mappings defined by:

f(1) = f(2) = b, f(3) = f(4) = a.

Then we can easily check that:483

f is τ -σI -open but neither τ -σI -closed nor open. In fact, f is neither the remain-484

der’s type open nor the remainder’s type closed.485
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5. Intuitionistic subspaces486

In this section, we introduce the notions of an intuitionistic subspace and the487

heredity, and obtain some properties of each concept.488

Definition 5.1 ([6]). Let (X, τ) be an ITS.489

(i) A subfamily β of τ is called an intutionistic base (in short, IB) for τ , if for490

each A ∈ τ , A = φI or there exists β
′ ⊂ β such that A =

⋃
β

′
.491

(ii) A subfamily σ of τ is called an intutionistic subbase (in short, ISB) for τ , if492

the family β = {
⋂
σ

′
: σ

′
is a finite subset of σ} is a base for τ .493

In this case, the IT τ is said to be generated by σ. In fact, τ = {φI} ∪ {
⋃
β

′
:494

β
′ ⊂ β}.495

Example 5.2. (1) ([6], Example 3.10) Let σ = {((a, b), (−∞, a]) : a, b ∈ R} be the496

family of ISs in R. Then σ generates an IT τ on R, which is called the “usual left497

intuitionistic topology” on R. In fact, the IB β for τ can be written in the form498

β = {RI} ∪ σ and τ consists of the following ISs in R:499

φI ,RI ;500

(∪(aj , bj), (−∞, c]),501

where aj , bj , c ∈ R, {aj : j ∈ J} is bounded from below, c < inf{aj : j ∈ J};502

(∪(aj , bj), φ),503

where aj , bj ∈ R, {aj : j ∈ J} is not bounded from below.504

Similarly, one can define the “usual right intuitionistic topology” on R using an505

analogue construction.506

(2) ([6], Example 3.11) Consider the family σ of ISs in R
σ = {((a, b), (−∞, a1] ∪ [b1,∞)) : a, b, a1, b1 ∈ R, a1 ≤ a, b1 ≤ b}.

Then σ generates an IT τ on R, which is called the “usual intuitionistic topology”507

on R. In fact, the IB β for τ can be written in the form β = {RI} ∪ σ and the508

elements of τ can be easily written down as in the above example.509

(3) ([11], Example 3.10 (3)) Consider the family σ[0,1] of ISs in R
σ[0,1] = {([a, b], (−∞, a) ∪ (b,∞)) : a, b ∈ R and 0 ≤ a ≤ b ≤ 1}.

Then σ[0,1] generates an IT τ[0,1] on R, which is called the “usual unit closed interval510

intuitionistic topology” on R. In fact, the IB β[0,1] for τ[0,1] can be written in the511

form β[0,1] = {R} ∪ σ[0,1] and the elements of τ can be easily written down as in the512

above example.513

In this case, ([0, 1], τ[0,1]) is called the “intuitionistic usual unit closed interval”514

and will be denoted by [0, 1]I , where [0, 1]I = ([0, 1], (−∞, 0) ∪ (1,∞)).515

Definition 5.3 ([11]). Let a, b ∈ R such that a ≤ b. Then516

(i) (the closed interval) [a, b]I = ([a, b], (−∞, a) ∪ (b,∞)),517

(ii) (the open interval) (a, b)I = ((a, b), (−∞, a] ∪ [b,∞)),518

(iii) (the half open interval or the half closed interval)519

(a, b]I = ((a, b], (−∞, a] ∪ (b,∞)), [a, b)I = ([a, b), (−∞, a) ∪ [b,∞)),520

(iv) (the half intuitionistic real line)521

(−∞, a]I = ((−∞, a], (a,∞)), (−∞, a)I = ((−∞, a), [a,∞)),522

[a,∞)I = ([a,∞), (−∞, a)), (a,∞)I = ((a,∞), (−∞, a]),523

(v) (the intuitionistic real line) (−∞,∞)I = ((−∞,∞), φ) = RI .524
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Definition 5.4. Let (X, τ) be a ITS and let A ∈ IS(X). Then the collection

τA = {U ∩A : U ∈ τ}
is called the subspace topology or relative topology on A.525

Example 5.5. (1) Let τ = {U ⊂ R : 0I ∈ U or U = φI} and let

A = ([1, 2], ((−∞, 1), (2,∞)) ∈ IS(R).

Then we can easily show that τ is an IT on R and τA is the subspace topology on526

A.527

(2) Let X = {a, b, c, d} be a set and consider the IT τ given by:

τ = {φI , XI , A1, A2, A3, A4},
whereA1 = ({a, b}, {c}), A2 = ({a, c}, {b, d}), A3 = ({a}, {b, c, d}), A4 = ({a, b, c}, φ).528

Let A = ({a, d}, {b, c}). Then529

τA = {φI ∩A,XI ∩A,A1 ∩A,A2 ∩A,A3 ∩A,A4 ∩A}530

= {φI , A, ({a}, {b, c}), ({a}, {b, c, d}), ({a}, {d})}.531

(3) Let (R, τ) be the usual intuitionistic topological space. Consider

A = ([0, 1], (−∞, 0) ∪ (1,∞)) ∈ IS(R).

Then τA = τ[0,1].532

(4) Let τ be the usual intuitionistic topology on R and let U ⊂ [0, 1]I such that
0I , 1I /∈ U . Then U ∈ τ[0,1] if and only if U ∈ τ . Suppose 0 < b < 1, for b ∈ R.
Consider (−1, b)I = ((−1, b), (−∞, b]∪ [b,∞)) and (b, 2)I = ((b, 2), (−∞, b]∪ [2,∞)).
Then (−1, b)I ∩ [0, 1]I = [0, b)I ∈ τ[0,1] and (b, 2)I ∩ [0, 1]I = (b, 1]I ∈ τ[0,1]. Thus

β = {(a, b)I : 0 < a < b < 1} ∪ {[0, b)I : 0 < b < 1} ∪ {(b, 1]I : 0 < b < 1}
is a base for τ[0,1].533

(5) Let τ = {U ⊂ IS(R) : 0I ∈ U or U = φI}. Then we can easily prove that534

τ is an IT on R. Let A = [1, 2]I ∈ IS(R) and let xI , xIV ∈ A. Then clearly,535

{0I , xI , xIV } ∈ τ and {0I , xI , xIV } ∩ A = {xI , xIV } ∈ τA. Thus τA is the intuition-536

istic discrete topology.537

The following is the immediate result of Definition 5.4.538

Proposition 5.6. Let (X, τ) be an ITS and let A ∈ IS(X). Then τA is an IT on539

A.540

Definition 5.7. Let (X, τ) be a ITS, let A ∈ IS(X) and let τA be the subspace541

topology on A. Then the pair (A, τA) is called a subspace of (X, τ) and each member542

of τA is called a relatively open set (in short, an open set in A).543

Example 5.8. (1) Let (R, τ) be the usual intuitionistic topological space. Then544

tauZ is the intuitionistic discrete topology on Z.545

(2) If τ is the intuitionistic discrete topology on a set X and A ∈ IS(X), then τA546

is the intuitionistic discrete topology on A.547

(3) If τ is the intuitionistic indiscrete topology on a set X and A ∈ IS(X), then548

τA is the intuitionistic indiscrete topology on A.549

The followings are the immediate results of Definition 5.4.550
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Proposition 5.9. Let (X, τ) be an ITS and let A,B ∈ IS(X) such that A ⊂ B.551

Then τA = (τB)A where (τB)A denotes the subspace topology on A by τB.552

Proposition 5.10. Let (X, τ) be an ITS, let A ∈ IS(X) and let β be a base for τ .553

Then βA = {B ∩A : B ∈ β} is a base for τA.554

Proposition 5.11. Let (X, τ) be an ITS and let A ∈ τ . If U ∈ τA, then U ∈ τ .555

Theorem 5.12. Let (X, τ) be an ITS, let A,B ∈ IS∗(X) such that B ⊂ A. Then556

B is closed in (A, τA) if and only if there exists F ∈ IC(X) such that B = A ∩ F .557

Proof. Suppose B is closed in (A, τA). Then A − B ∈ τA. Thus there exists U ∈ τ558

such that A−B = A∩Bc = A∩U , i.e., AT ∩BF = AT ∩UT and AF ∪BT = AF ∪UF .559

Since B ⊂ A and A,B ∈ IS∗(X), we have BT = AT ∩ UF and BF = AF ∪ UT , i.e.,560

B = A ∩ U c. Since U ∈ τ , U c ∈ IC(X). So B is closed in A.561

Conversely, suppose there exists F ∈ IC(X) such that B = A∩F . Then F c ∈ τ .562

Since A,B ∈ IS∗(X), it is clear that A − B = A ∩ F c. Thus A − B ∈ τA. So B is563

closed in A. �564

The following is the immediate result of Theorem 5.12.565

Corollary 5.13. Let (X, τ) be an ITS such that τ ⊂ IS∗(X), let A ∈ IC(X) and566

let B ∈ IS∗(X). If B is closed in A, then B ∈ IC(X).567

Proposition 5.14. Let (X, τ) be an ITS such that τ ⊂ IS∗(X), let A,B ∈ IS∗(X)568

such that B ⊂ A. Then clτA(B) = A ∩ Icl(B), where clτA(B) denotes the closure of569

B in (A, τA).570

Proof. Since Icl(B) ∈ IC(X), A∩ Icl(B) is closed in (A, τA). Since B ⊂ A∩ Icl(B)571

and clτA(B) =
⋂
{F : F is closed in A and B ⊂ F}, clτA(B) ⊂ A ∩ Icl(B).572

On the other hand, clτA(B) is closed in A. Then by Theorem 5.12, there exists573

F ∈ IC(X) such that clτA(B) = A ∩ F . Since B ⊂ clτA(B), B ⊂ F . Thus574

Icl(B) ⊂ F . So A ∩ Icl(B) ⊂ A ∩ F . Hence A ∩ Icl(B) ⊂ clτA(B). Therefore575

clτA(B) = A ∩ Icl(B). �576

Theorem 5.15. Let (X, τ) be an ITS, let A,U ∈ IS(X) such that A ⊂ U and let577

a ∈ X.578

(1) If aI ∈ A, then U ∈ NτA(aI) if and only if there exists V ∈ N(aI) such that579

U = A ∩ V , where NτA(aI) denotes the set of all neighborhoods of aI in (A, τA).580

(2) If aIV ∈ A, then U ∈ NτA(aIV ) if and only if there exists V ∈ N(aIV ) such581

that U = A ∩ V , where NτA(aV ) denotes the set of all neighborhoods of aIV in582

(A, τA).583

Proof. Suppose U ∈ NτA(aI). Then there exists G ∈ τA such that aI ∈ G ⊂ U .584

Since G ∈ τA, there exists H ∈ τ such that G = A ∩ H. Let V = U ∪ H. Then585

clearly, aI ∈ H ⊂ V . Thus V ∈ N(aI). Since G = A ∩ H, U = A ∩ V . So the586

necessary condition holds.587

The proof of the converse is easy.588

(2) The proof is similar. �589

Proposition 5.16. Let (X, τ), (Y, σ) be ITSs and let A ∈ IS(X), B ∈ IS(Y ).590

(1) The inclusion mapping i : A→ X is continuous.591
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(2) If f : X → Y is continuous, then f |A : A→ Y is continuous.592

(3) If f : X → B is continuous, then the mapping g : X → Y defined by g(x) =593

f(x), for each x ∈ X is continuous.594

(4) If f : X → Y is continuous and f(XI) ⊂ B, then the mapping g : X → B595

defined by g(x) = f(x), for each x ∈ X is continuous.596

Proof. (1) Let U ∈ τ . Then clearly, A ∩ U ∈ τA and i−1(U) = A ∩ U . Thus i is597

continuous.598

(2) Let U ∈ σ. Then clearly, f−1(U) ∈ τ . Thus A ∩ f−1(U) ∈ τA and599

(f |A)−1(U) = A ∩ f−1(U). Thus (f |A)−1(U) ∈ τA. So f |A is continuous.600

(3) Let U ∈ σ. Then clearly, B ∩ U ∈ σB . Since f : X → B is continuous,601

f−1(B ∩ U) = f−1(U) ∈ τ . Since g(x) = f(x), for each x ∈ X, g−1(U) = f−1(U).602

Thus g−1(U) ∈ τ . So g is continuous.603

(4) Let U ∈ σB . Then there is V ∈ σ such that U = B ∩ V . Since f : X → Y is
continuous, f−1(V ) ∈ τ . On the other hand,

g−1(U) = g−1(B) ∩ g−1(V ) = X ∩ f−1(V ) = f−1(V ).

Thus g−1(U) ∈ τ . So g is continuous. �604

Proposition 5.17. Let X,Y be ITSs, let f : X → Y be a mapping, let {Uj : j ∈605

J} ⊂ IO(X) such that XI =
⋃
j∈J Uj and let f |Uj

: Uj → Y is continuous, for each606

j ∈ J . Then so is f .607

Proof. Let V ∈ IO(Y ) and let j ∈ J . Then by the hypothesis, (f |Uj )−1(V ) ∈608

IO(Uj). Since Uj ∈ IO(X), by Proposition 5.16 (2), (f |Uj )−1(V ) ∈ IO(X). Thus609

f−1(V ) =
⋃
j∈J(f |Uj

)−1(V ) ∈ IO(X). So f is continuous. �610

Proposition 5.18. Let (X, τ) be an ITS such that τ ⊂ IS∗(X), let (Y, σ) be an
ITS, let A,B ∈ IC(X) such that XI = A ∪ B and let f : A → Y , g : B → Y be
continuous such that f(x) = g(x), for each x ∈ AT ∩ BT . Define h : X → Y as
follows:

h(x) = f(x),∀x ∈ AT and h(x) = g(x),∀x ∈ BT .
Then h is continuous.611

Proof. Let F ∈ IC(Y ). Since f : A → Y and g : B → Y are continuous, by Result612

3.3, f−1(F ) is closed in A and g−1(F ) is closed in B. Since A,B ∈ IC(X), by613

Corollary 5.13, f−1(F ), g−1(F ) ∈ IC(X). On the other hand, h−1(F ) = f−1(F ) ∪614

g−1(F ). Then h−1(F ) ∈ IC(X). Thus by Result 3.3, h is continuous. �615

Definition 5.19. An intuitionistic topological property P is said to be hereditary616

if every subspace of an ITS with P also has P .617

For separation axioms in intuitionistic topological spaces, see [3, 12].618

Proposition 5.20. (1) T0(i) is hereditary, i.e., every subspace of a T0(i)-space is619

T0(i).620

(2) T1(i) is hereditary, i.e., every subspace of a T1(i)-space is T1(i).621

(3) T2(i) is hereditary, i.e., every subspace of a T2(i)-space is T2(i).622
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Proof. Let (X, τ) be an ITS and let A ∈ IS(X).623

(1) Suppose (X, τ) is T0(i) and let xI 6= yI ∈ A. Then clearly, x 6= y ∈ X. Thus624

by the hypothesis, there exists U ∈ τ such that xI ∈ U, yI /∈ U or xI /∈ U, yI ∈ U .625

Let V = A ∩ U . Then clearly, V ∈ τA. Moreover, xI ∈ V, yI /∈ V or xI /∈ V, yI ∈ V.626

Thus (A, τA) is T0(i).627

(2) Suppose (X, τ) is T1(i) and let xI 6= yI ∈ A. Then clearly, x 6= y ∈ X.628

Thus by the hypothesis, there exists G,H ∈ τ such that xI ∈ G, yI /∈ G and629

xI /∈ H, yI ∈ H. Let U = A ∩ G and let V = A ∩ H. Then clearly, U, V ∈ τA.630

Moreover, xI ∈ U, yI /∈ U or xI /∈ V, yI ∈ V. Thus (A, τA) is T1(i).631

(3) Suppose (X, τ) is T2(i) and let xI 6= yI ∈ A. Then clearly, x 6= y ∈ X. Thus632

by the hypothesis, there exists G,H ∈ τ such that xI ∈ G, yI ∈ H and G∩H = φI .633

Let U = A ∩ G and let V = A ∩ H. Then clearly, U, V ∈ τA. Since G ∩ H = φI ,634

U ∩ V = φI . Moreover, xI ∈ U and yI ∈ V . So (A, τA) is T2(i). �635

Proposition 5.21. Let (X, τ) be an ITS such that τ ⊂ IS∗(X).636

(1) T3(i) is hereditary, i.e., every subspace of a T3(i)-space is T3(i).637

(2) An intuitionistic complete regularity is hereditary, i.e., every subspace of in-638

tuitionistic complete regular space is intuitionistic complete regular.639

Proof. (1) Suppose (X, τ) be T3(i) and let A ∈ IS∗(X). Since (X, τ) is T1(i), by640

Proposition 5.20 (2), (A, τA) is T1(i). Let B be closed in (A, τA) such that xI ∈ Bc.641

Then by Theorem 5.12, there exists F ∈ IC(X) such that B = A∩F . Since xI ∈ Bc,642

xI ∈ F c. Thus by hypothesis, there exist U, V ∈ τ such that F ⊂ U , xI ∈ V and643

U ∩ V = φI . So A ∩ U,A ∩ V ∈ τA and (A ∩ U) ∩ (A ∩ V ) == φI . Moreover,644

F ⊂ A ∩ U and xI ∈ A ∩ V . Hence (A, τA) is T3(i).645

(2) Suppose (X, τ) be an intuitionistic complete regular space and let A ∈ IS∗(X).646

Since (X, τ) is T1(i), by Proposition 5.20 (2), (A, τA) is T1(i). Let B be closed in A647

such that xI ∈ Bc. Then by Theorem 5.12, there exists F ∈ IC(X) such that B =648

A ∩ F . Since xI ∈ Bc, xI ∈ F c. Thus by the hypothesis, there exists a continuous649

mapping f : X → [0, 1]I such that f(xI) = 1I and f(yI) = 0I , for each yI ∈ F . Since650

f : X → [0, 1]I is continuous, by Proposition 5.16 (2), f |A : A→ [0, 1]I is continuous.651

Let yI ∈ B. Since B = A ∩ F , yI ∈ F . So f |A(yI) = f(yI) = 0I . Moreover,652

f |A(xI) = f(xI) = 1I . Hence (A, τA) is intuitionistic complete regular. �653

Proposition 5.22. Let (X, τ) be an ITS such that τ ⊂ IS∗(X) and let A ∈ IC(X).654

If (X, τ) is T4(i), then (A, τA) is T4(i).655

Proof. Suppose (X, τ) is T4(i) and let A ∈ IC(X). Since (X, τ) is T1(i), by Proposi-656

tion 5.20 (2), (A, τA) is T1(i). LetB and C be closed inA such thatB∩C = φI . Then657

by Theorem 5.12, there exists F1, F2 ∈ IC(X) such that B = A∩F1 and C = A∩F2.658

Since A ∈ IC(X), B,C ∈ IC(X). Thus by the hypothesis, U, V ∈ τ such that659

B ⊂ U , C ⊂ V and U ∩ V = φI . So A∩U,A∩ V ∈ τA and (A∩U)∩ (A∩ V ) = φI .660

Moreover, B ⊂ A ∩ U and C ⊂ A ∩ V . Hence (A, τA) is T4(i). �661

6. Conclusions662

In this paper, we mainly dealt with some properties of quotient mappings, various663

types of continuities, open and closed mappings in intuitionistic topological spaces.664
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In particular, we defined continuities, open and closed mappings under the global665

sense but did not define them under the local sense.666
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